Skip to Main Content

Ansys ModelCenter
Connecting system requirements to engineering analysis

Empower engineers to createand automatemulti-tool workflows, optimizeproduct designs, andenableModel-Based Systems Engineering (MBSE)by connecting requirements to engineering.

UNLOCK THE PROMISE OF MBSE

Automate any Engineering Analysis Tool to a Digital Thread

Automate the execution of any software tool, such as Ansys LS-Dyna, MathWorks MATLAB®, Microsoft Excel®, MSC Nastran®, PTC Creo®, and many more. Integrate these tools to create automated engineering workflows and build a workflow library. Leverage high-performance computing to ask “what-if” questions to perform trade studies. Connect all of it to a systems architecture model to enable Model-Based Systems Engineering (MBSE).

  • Reduce Development Costs
    Reduce Development Costs
  • Design more competitive products
    Design More Competitive Products
  • Verify Requirements Using Any Engineering
    Verify Requirements Using Any Engineering
  • Connect Any Analysis to the Digital Thread
    Connect Any Analysis to the Digital Thread
Automate any engineering analysis tool to a digital thread

Quick Specs

ModelCenter simplifies engineering workloads by automating repeatable tasks and creating direct links between engineering tools and requirements. Users have gone from a few simulations per day to hundreds. Organizations can now shift resources left, reducing developmental costs while accelerating the time-to-market.

  • Early Concept Design Exploration
  • Open Architecture
  • Automatically Execute Workflows
  • Identify Problems Early
  • Integrate MBSE to Analysis & Simulation
  • Behavioral Simulation
  • Make Better Decisions
  • Increase Collaboration
  • Automate Any Tool
  • Easy-to-create Engineering Workflows
  • Explore Trade-Offs
  • Model as a Service

Integrating Model-Based Systems Engineering (MBSE) to Simulate the Mission Trajectory of the OSIRIS-REx Spacecraft

Leveraging MBSE to improve the continuous verification of requirements and mission design parameters

Integrating Model-Based Systems Engineering (MBSE) to Simulate the Mission Trajectory of the OSIRIS-REx Spacecraft

“Automating and integrating the simulation into this system model then allows the team to rapidly identify potential issues with changes to mission requirements, as well as perform continuous verification of requirements and mission design parameters throughout the lifecycle of the spacecraft... The overall improvement versus the original process was about a 7x speedup in turnaround time.”

—Phathom Athena Donald, Systems Engineer, Lockheed Martin Space

On September 5, 2016 an Atlas V rocketed from Cape Canaveral carrying the OSIRIS-REx spacecraft on a mission to discover the origin of our solar system by exploring the asteroid Bennu. Bennu may help us find answers to the questions central to the human experience: Where did we come from? What is our destiny?

The specific mission had the following objectives:

  • Return and analyze a sample of Bennu’s surface
  • Map the asteroid
  • Document the sample site
  • Measure the orbit deviation caused by non-gravitational forces (the Yarkovsky effect)
  • Compare observations at the asteroid to ground-based observations

In October 2020, OSIRIS-REx conducted a “touch-and-go” maneuver to collect at least 60 grams, a far larger sample size than any other previous sample retrieval mission. On May 10, 2021, OSIRIS-REx fired its thrusters and heads on a 2.5-year course back to Earth.

The OSIRIS-REx mission was complex and daunting. Preparing for it required months of testing, modeling, and analyzing each step. This case study explores how Lockheed Martin planned for the mission using ModelCenter® and ModelCenter MBSE to enable Model-Based Systems Engineering (MBSE) for the success of the mission.  

Simulate Systems Behaviors

Simulate Systems Behaviors

Form a bridge between MBSE behavioral models and the simulation environment. Create and evaluate interactions between your MBSE models and their simulated operating environment to predict mission outcomes and assess capability performance.

Greater Integration

Greater Integration

ModelCenter has launched a new plug-in for Ansys HFSS to improve the connection between systems requirements and 3D electromagnetic field simulation. This plug-in will accelerate the design exploration for RF and wireless devices.

Choose Your Solution

Choose Your Solution

ModelCenter offers Pro, Premium, and Enterprise levels and this new packaging makes it easier for customers to start their MBSE journey.

Model-based Engineering processes require an intuitive, flexible and open framework

ModelCenter implements Model-Based Engineering processes flexibly. With ModelCenter, engineers can create and maintain a library of modeling and simulation tools and engineering workflows. You'll automatically execute the workflows, leverage high-performance computing resources to perform trade studies, and ask "what-if" questions. Best of all, these workflows connect to a systems architecture model to perform Model-Based Systems Engineering (MBSE).

Model-based engineering processes require an intuitive, flexible and open framework

 

Key Features

Drive innovation and improves product quality by enabling users to thoroughly explore and understand design alternatives, make better decisions, and find optimal solutions.

ModelCenter provides a graphical user interface for executing the connected ModelCenter workflow. Analysis results can check requirements conformance, with unsatisfied requirements are automatically highlighted. Trade studies can evaluate different design configurations and optimize the system design. New design configurations can update the systems model.

ModelCenter permits engineers to connect any analysis to behavioral diagrams created using NoMagic MagicDraw/Cameo or PTC Windchill Modeler. The integrated model (behavioral diagram plus analysis) results in a high-fidelity system simulation allowing engineers to accurately VERIFY system behavior and performance early in the design cycle, reducing costs and designing better products.

ModelCenter Integrate provides users with tools and methods that allow them to automate the execution of any modeling tool. Examples include user-created tools and scripts, legacy FORTRAN/C++ programs, spreadsheets, mathematical models, databases, and Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) models.

Once a few software tools are automated, ModelCenter’s drag-and-drop graphical user interface can be Once a few software tools are automated, ModelCenter's drag-and-drop graphical user interface can assemble these tools into a complete engineering workflow. An engineering workflow is a flowchart that specifies the order and conditions on how and when to automate the tools. Like flowcharts, workflows can contain branches, if-then statements, loops, etc. Execute the workflow – automatically.

ModelCenter's Link Editor allows you to specify the data transferred from one tool to the next when the workflow happens. Your workflow may contain tools that run on any number of different computers and operating systems.

Analysis and trade-study results can discover significant trends and tradeoffs. Once a repeatable engineering analysis process is created, engineers can repeatedly execute the process (using parallel computing resources if available). Each execution corresponds to a different set of inputs. This process allows engineers to explore and quantify the performance, cost, reliability, and risk of many various design alternatives in a relatively short time.

MODELCENTER RESOURCES & EVENTS

Resources & Events

On-Demand Webinar
optiSLang optimization

Model-Based Systems Engineering (MBSE) Expert Panel

Listen and learn about Model-Based Systems Engineering (MBSE) from the experts at NASA Jet Propulsion Laboratory, SAIC, Vitech, Northrop Grumman Corp., and Ford Motor Company. 

On-Demand Webinar
2021-01-optislang-webinar-design-card.jpg

Digital Mission Engineering (DME) Expert Panel

Listen and learn about Digital Mission Engineering (DME) from the experts at the Office of Secretary of Defense – Research and Engineering, Parsons, SAIC, Air Force Life Cycle Management Center, and Space Systems Command – US Space Force.

On-Demand Webinar
optiSLang webinar series

Multidisciplinary Design, Analysis, and Optimization (MDAO) Expert Panel

Listen and learn about Multidisciplinary Design, Analysis, and Optimization (MDAO) from the experts at Air Force Research Laboratory, Northrop Grumman Aeronautics Systems, ManTech, The Boeing Company, and Lockheed Martin Aeronautics. 


Ansys가 귀사를 위해 무엇을 할 수 있는지 알아보십시오.

문의하기

* = 필수 항목

문의해 주셔서 감사합니다!

We’re here to answer your questions and look forward to speaking with you. A member of our Ansys sales team will contact you shortly.

바닥글 이미지