Skip to Main Content

 

WEBINAR

Developing Damage Models to Predict Solder Fatigue

Solder, which provides the structural and electrical connection between a printed wiring board (PWB) and electrical components, is the dominant material used for assembling electronics. However, solder is also one of the few structural materials that is expected to undergo significant inelastic deformation during its lifetime.

Inelastic deformation damages solder, which can lead to eventual solder joint failure. Predicting when the solder joint fails is critical when using solder in harsh use environments.  These harsh environments have loads that can come in several forms (i.e., drop/shock, vibration, temperature cycling).

The majority of solder fatigue in electronics is thermomechanically driven due to temperature cycling which causes significant deformations and stresses due to coefficient of thermal expansion (CTE) mismatches between the PWB and components. In order to predict solder failure, a damage model must be used that relates deformation of the solder to cycles to failure.

In this webinar, we will discuss material characterization of various solder alloys, predictive solder fatigue damage models using a physics-of-failure approach (PoF) and how to develop damage models using simulation and testing.

SHARE THIS WEBINAR

现在就开始行动吧!

如果您面临工程方面的挑战,我们的团队将随时为您提供帮助。我们拥有丰富的经验并秉持创新承诺,期待与您联系。让我们携手合作,将您的工程挑战转化为价值增长和成功的机遇。欢迎立即联系我们进行交流。