Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
Ansys는 학생들에게 시뮬레이션 엔지니어링 소프트웨어를 무료로 제공함으로써 오늘날의 학생들의 성장을 지속적으로 지원하고 있습니다.
ANSYS BLOG
March 31, 2023
All major automotive original equipment manufacturers (OEMS) have announced that they are going fully electric within a few years, so the spotlight is turning toward the aviation industry to drastically reduce carbon emissions. While the aviation sector is much more difficult to decarbonize, many aviation leaders are vowing to reach net-zero carbon emissions goals by 20501, so OEMs in aviation are striving to adopt new initiatives and technologies to reach these goals safely.
By embracing digital transformation and integrating simulation into workflows, engineers can design cleaner, faster, and smarter systems that reduce carbon emissions, material use, and noise pollution. Digital engineering enables engineers to integrate sustainability best practices into all phases of the life cycle, including the concept design phase.
To support the commercial aviation industry’s goal to meet emission reduction targets2, Aerospace Technology Institute (ATI) FlyZero worked with Ansys solutions to develop three aircraft concepts with zero in-flight carbon emissions for use in 2030.
ATI FlyZero wanted to compare the sustainability impact of three benchmark aircraft against the three concept aircraft (Figure 1). The benchmark aircraft are hydrocarbon fuel kerosene aircraft that could be expected to be in service in 2030. The concept aircraft explore new propulsion technology, such as hydrogen combustion and hydrogen fuel cells with electric powertrain.
The aircraft were divided into five main design modules:
FlyZero used the materials data library in Ansys Granta MI and Ansys Granta Selector to establish reference data for the materials and manufacturing processes. This compares technical, cost, and sustainability information — supported by a streamlined life cycle analysis (LCA) tool and methodology (Eco Audit in Granta) — and tools for screening restricted substances and social impacts. The Ansys software suite addresses materials information management for technical and sustainability information, with integration to engineering design processes:
Figure 2 indicates where in the product development workflow the Ansys toolset can intervene early for sustainability assessment and trade-off decisions.
The FlyZero team determined the highest material environmental impact was carbon fiber-reinforced plastic (CFRP) used for the airframes of all aircraft. CFRP can replace steel and aluminium thanks to its high strength-to-weight ratio, which greatly improves fuel savings — CFRP density can be half of aluminium and four times lower than steel.
However, the materials and manufacturing process of CFRP — and its low recyclability — should be re-evaluated against lower CO2 propulsion options. Bio-based carbon and recycling technology may present an opportunity for lower environmental impact, but it faces other challenges, such as low fire resistance and strength, and is currently still on the pathway to scalability.
Screening for restricted substances also indicated that plastics — including epoxy — contained some of the highest risks, followed by nickel-based materials. In terms of social performance, the list of elements with highest impact deviated from the lists of substances and materials highlighted as risks for the environmental and restricted substances lists, and instead identified elements having either price volatility due to geopolitical sourcing issues and/or scarcity.
Figure 3 identifies high-level stages of the design process and indicates the integration of Ansys materials software tools and data to enable quick screening of materials and manufacturing for effective eco design, with insight on end-of-life options. The concept design phase is a critical moment in the life of a product as this is the point at which materials, manufacturing, use phase design, and end-of-life decisions are essentially decided and 80% of life cycle impacts and costs are locked in. However, it is also the design phase with the most options (materials, processes, geometry, etc.), yet has the least amount of detailed information available due to supplier confidentiality and/or lack of primary measurements.
This work informed the FlyZero team of the environmental impact of the aircraft quantitatively (global warming potential, embodied energy) and qualitatively by identifying hazardous/restricted materials, security of supply or unethical sourcing, recyclability, etc. You can download the "ATI FlyZero — Sustainability Report" here. The results of this work will inform decisions for future research and development challenges, such as the need for material or manufacturing process substitution.
Learn more about how Ansys Granta MI can help your propulsion aircraft design by visiting our Ansys materials page.
여러분의 질문에 답변해 드리기 위해 최선을 다하겠습니다. Ansys 담당 엽업이 곧 연락을 드릴 것입니다.