Case Study
产品组合
查看所有产品Ansys致力于通过向学生提供免费的仿真工程软件来助力他们获得成功。
Case Study
“Ansys Zemax OpticStudio has been critical to our work. Without it, we would never have identified key optical aberrations we needed to consider for our system design to prevent an impact on our science. We saved a great deal of time and money, and improved productivity, by being able to understand theseaberrations during design and then modify and improve key elements before proceeding to fabrication."
— Dr. Jonathan Crass, Assistant Research Professor, University of Notre Dame
Precise simulation enables rapid design iterations for a radial velocity instrument, building confidence in spectrograph design
The University of Notre Dame’s Department of Physics supports wide-ranging astronomy research in ground-based optical and infrared astronomy, as well as in observational/theoretical astrophysics and cosmology. Many of its ground-based observational achievements come from its famous partnership with the Large Binocular Telescope (LBT) at the Mount Graham International Observatory in Arizona. Scientists from all telescope partners use the LBT to address astronomical challenges ranging from the study of objects in our solar system to studies of the early universe.
Over the past two decades, ground-based adaptive optics systems have now advanced sufficiently to where they are able to correct for changes in the atmosphere in real time and provide beams in the near-infrared to astronomical instruments. This allows the use of significantly smaller (5-10 µm) single-mode fibers, enabling efficient diffraction-limited spectrograph designs. This change in design concept is the driving force behind the development of iLocater, the first optimized single-mode fiber-fed radial velocity-based instrument for the discovery and study of exoplanets.
UND originally used Ansys Zemax OpticStudio to design and optimize the instrument fiber injection system for LBT, which was successfully commissioned at the telescope in 2019. More recently, the university has embarked on developing the Doppler spectrometer element of the instrument that includes one of the first diffractionlimited spectrographs to be used for extremely precise RV studies of exoplanets. To achieve this submeter-per-second precision, it was necessary to build capabilities into the iLocater spectrograph to identify and compensate for Doppler-like color shifts that distort or dilute its output data using OpticStudio.
我们乐意随时解答您的问题,并期待与您进一步沟通。Ansys销售团队人员将很快与您联系。