Case Study
Case Study
“Using Ansys solutions allowed us to iterate our humanoid robot’s design with confidence. The ability to simulate mechanical stresses, actuator loads, and kinematic behavior before building helped us catch design flaws early. It accelerated our progress, saved material costs, and made us stronger engineers.”
-Abhinav Swarup, President, Triton Droids
At Triton Droids, a student team from the University of California, San Diego, students set out to build a life-size humanoid robot capable of complex motion and stability. Humanoid robots represent the future of robotics, and building one gives students invaluable hands-on experience in an emerging field that bridges mechanical design, control systems, and artificial intelligence (AI).
To meet strict mechanical and power constraints, the team turned to engineering simulation. Ansys software enabled the team to validate and optimize structural integrity and actuator dynamics before physical prototyping, saving valuable time and resources.
Designing a humanoid robot involves complex mechanical linkages and multiple degrees of freedom. Balancing weight, strength, and agility while ensuring efficient motor and joint operation proved to be a significant challenge. Calculating joint torques in the leg was difficult, as each joint’s required torque depends on both the motor specifications and the weight of components further down the chain. As a result, simulation became essential for accurately predicting performance under load, reducing overall weight, and minimizing the risk of mechanical failure.
Computed-aided engineering (CAD) model of Triton Droids’ five degrees of freedom (DOF) humanoid leg with modular joints for the hip, knee, and ankle
Baxter industrial robot donated by the team’s advisor, which was used for manipulation and perception research
Using Ansys software drastically reduced trial-and-error cycles. Students identified and corrected weak points before manufacturing, which saved time and reduced costs. It also accelerated learning: by comparing simulation data with real-world testing, the team gained a deeper understanding of force transmission, balance, and system dynamics in robotics.
Demonstration of the leg prototype featuring three DOF at the hip, one DOF at the knee, and one DOF at the ankle
Joint layout of the humanoid leg with degrees of freedom depicted
如果您面临工程方面的挑战,我们的团队将随时为您提供帮助。我们拥有丰富的经验并秉持创新承诺,期待与您联系。让我们携手合作,将您的工程挑战转化为价值增长和成功的机遇。欢迎立即联系我们进行交流。