ANSYS Electronics Desktop

The ANSYS Electronics Desktop environment houses the ANSYS gold-standard electromagnetics simulation applications. Tight integration among the simulators yields unprecedented ease of use for setup and solution of complex simulations for design and optimization. It is the native desktop for HFSS, Maxwell, Q3D Extractor, Twin Builder and other simulators. More information is available on this page.


Optimized User Environment

The full-featured 3D solid modeler and layout interface enables you to work in a layout design flow, or to import and edit 3D CAD geometry.

HFSS 3D Modeler: The 3D interface enables you to model complex 3D geometry or import CAD geometry for simulation of high-frequency components, such as antennas, RF/microwave components and biomedical devices. You can extract scattering matrix parameters (S, Y, Z parameters), visualize 3D electromagnetic fields (near- and far-field) and generate ANSYS Full-Wave SPICE models that link to circuit simulations.

HFSS 3D Layout: HFSS 3D Layout is an optimized interface for layered geometry of PCBs, IC packages and on-chip passives. It is suitable for analyzing the signal integrity of PCBs and packages, including full-wave or radiative effects. Applications range from high-speed serial links with complex breakout regions and poorly referenced transmission lines, to patch antennas and millimeter-wave circuits. Engineers can draw or import geometry to analyze electromagnetic behavior, display radiated fields, investigate impedances and propagation constants, explore S-parameters or calculate insertion and return loss.

The model is assembled and rendered in a Layout environment; however, all effects are rigorously simulated, including 3D features such as trace thickness and etching, bond-wires, and solder balls. Layout geometry is primarily described in 2.5D with a stack-up and specialized primitives such as vias, pins, traces and bond-wires. The editor is completely parametric, so trace widths or thicknesses can be easily varied or parameterized for sweeps, optimization or design-of-experiments (DOE). The HFSS solver within 3D Layout includes many features targeted specifically for PCB and package structures. These features include advanced meshing technology optimized for layered geometry and integrated circuit elements and S-parameters for modeling of discrete components.

To accurately predict a system’s performance, analyzing the electronic interaction between components and subsystems in an integrated environment can be critical. HFSS 3D Layout allows for creation of a PCB assembly, connecting boards, ICs and discrete components. With this approach, you can pick and place 3D connector models on a PCB without the need to create a schematic. Electrical engineers have long used schematic-based design entry to connect models together for printed circuit boards, IC packages and components. This works well for relatively simple designs, but becomes tedious and error prone for larger and more complex designs. With layout-driven assembly, pin connections are automatically established based on the geometry. Once an assembly is created, HFSS 3D Layout can invoke a range of solvers appropriate for each component, or geometries can be merged and solved together.

From the HFSS 3D Layout interface, you can access an expanding list of solvers, which include HFSS, SIwave and Planar EM. This allows for iterative design using fast SIwave solves, and rigorous verification using HFSS, all from the same design and geometry.

Gallileo Board