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/  Introduction

Vertical Filling

Vertical filling is a flexible process and commonly used in industrial 
packaging of granular foods, such as candy, snacks and bakery goods. The 
process is shown schematically in Figure 1. By increasing the frequency 
of drops of granulate portions, the output rate can be easily increased. 
However, the time distance between the portions must be kept large 
enough so that there is enough time to perform sealing. Otherwise, particles 
get caught between the sealing jaws, which often results in need for 
maintenance. Thus, compact falling of the portions is important for keeping 
the process reliable.

Discrete Element Method (DEM)

1. Overview

The Discrete Element Method (DEM) simplifies contacts by assuming 
particles to be stiff. Deformation is implemented by allowing a small overlap 
between particles. Contact forces are then calculated with simple relations 
to the current overlap. A variety of contact models are available in different 
DEM implementations. The model used here is the linear hysteresis model 
developed by Walton and Braun [1, 2] (Figure 2).

2. Model Calibration

Identifying model parameters for DEM simulations is challenging [4, 5]. An 
attractive and commonly used method is numerical model calibration, 
which consists of varying the model parameters while comparing 
the simulations to experimental results until reality is reproduced to a 
satisfactory extend. Calibration is usually performed in a relatively simple 
representative experiment [6]. A consecutive validation step can be then 
performed to verify if the model parameters hold up in the actual process of 
interest.

3. Solver Noise

Since granular systems are highly chaotic, small variations in initial 
conditions, such as the precise positions of individual particles in the 
collection bin before the drop [3], can dramatically affect the process 
outcome [7]. Physical randomness, just as process design, can be of great 
importance in achieving a desirable outcome and avoiding unfavorable 
ones. This is true for the physical process as well as for the simulations.

Goal

For this study, model parameters for a granular sample food had to be 
found. The chosen good was sugar-coated, bite-size chocolate candy with a 
porous cookie core. As calibration trial, a drop test that is very similar to the 
industrial process was used representing in-situ calibration [5]. Further, the 
necessity to incorporate the physical randomness in the DEM simulations 
and their effect on the calibration was evaluated. Finally, the methods were 
compared with regard to their feasibility, robustness and accuracy.

At Robert Bosch Packaging Technology, optiSLang was used in conjunction with Rocky DEM 
to obtain accurate models for the simulation of vertical filling of granular foods.

Figure 1. The vertical filling process. Schematic 
overview over process principle. Successful 
sealing (bottom left) and likely defect due to 
particles getting caught in the sealing unit 
(bottom right).

Figure 2. Relationship between particle e 
overlap and Force fn for restitution coefficient 
ɛ=0.4 (from [3]).
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/  Experiment
The drop setup has been described in [3] and is shown in Figure 3. Two 
rectangular falling tubes with different inner areas A□,1 and A□,2 where 
available. By varying the sample mass, a total of three scenarios were 
performed (Table 1).

The experiment was initiated by opening the flaps at the bottom of the 
sample container. The time stamps of the first and last particle leaving the 
tube at the bottom were  recorded. The difference between these residence 
times Δtres is equivalent to the portion range τrg discussed in [3].

τrg=Δtres=tres,lp−tres,fp

Then, the degree of filling ap of the tube was tracked over time and 
normalized to the maximal possible value (entire tube filled). Figure 3 (see 
previous page) shows a frame cropped to the tube and the relative particle 
occupancy ap plotted over time.

/  Simulation

Discrete Element Method

The experimental design (see chapter Experiment) was replicated with CAD 
tools and imported into the DEM environment. The pieces of candy were 
nearly spherical, so a spherical particle representation was chosen. The 
average sieve diameter of the particles was used as the sphere’s diameter.

Young’s modulus was chosen with regard to numerical criteria 
(computational cost and numerical stability) and left constant at 108 
Pa [8]. The calibration parameters x (Table 2) were friction coefficients μ, 
respectively for the static (sticking) and the dynamic (sliding) case and 
the coefficients of restitution ɛ. Each parameter was assumed different for 
the interaction between the particles (P-P) and the interaction between 
particles and the boundary (P-B). Additionally, a factor for rolling resistance 
was calibrated to account for the increased rolling of spherical particles 
compared to the real particles [9]. The eventual model parameters x differ 
from the “true” physical parameters due to model shortcomings [10, 11]. 

Calibration

The goal of model calibration is to identify the parameter set x that produces 
the best match between simulations w and the experimental results u. 
For the drop test, we aim to accurately predict the portion range trg from 
the experiment. This goal can be formulated as an optimization problem, 
where the error between the simulation and the experiment has to be 
minimized. Several optimization strategies have been used for DEM model 
calibration, such as manual comparison [12], gradient-based methods [13], 
genetic algorithms [14] and Artificial Neural Networks [4]. A recently followed 
approach is to create a metamodel with a kriging algorithm from several 
anchor points in the parameter space and perform the optimization on the 
resulting surrogate model [15].

The benefit of the latter method is that the number of solver runs can be 
reduced and evaluation of the goal function on the surrogate model is quick.

The procedure was implemented in an automated calibration workflow 
(Figure 4) in optiSLang. The DEM solver was called at different parameter 
sets (samples) and the results were compared to the experimental data. The 
data was then processed into a metamodel of the solver behavior.

Figure 3. Drop setup described in [3] and 
snapshot of drop test. Measures in mm.

Table 1. Scenarios of the drop test.

Table 2. Calibration parameters.
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1. Metamodeling

Kleijnen [16] gives a comprehensive theoretical overview over metamodeling 
methods, so we will use part of his nomenclature here. The solver output w 
has to be approximated by the output ŵ of the metamodel ƒmeta.

w = ƒsim(x,r) = ƒmeta(x) + e

ƒsim is the noisy solver function which depends on the calibration parameters 
x and the seed of the random number generator r. The metamodel function 
is ƒmeta with its value depending only on the calibration parameters x. e is the 
residual vector, in which the local error of the metamodel at anchor point i is

ei = ŵ − wi

If we make the assumption that the kriging algorithm is capable of 
describing the behavior of a deterministic solver ƒsim(x), there must be a 
kriging parameter set β which provides optimal fidelity. However, we must 
keep in mind that we only have a finite amount of anchor points n to work 
with, so we can only find an estimate  of β. [16]

In the case of a noisy solver ƒsim(z,r), the regression will smooth out some 
of the solver noise [17, 16], while producing greater residuals than in the 
deterministic case. This does not imply bad quality of the metamodel but 
rather highlights the deterministic nature of ƒmeta. The criteria after how 
many simulation runs the metamodel should be finalized is not obvious 
here. A possible criterion is to track the mean residuals over the number 
of anchor points n and stop the process when stagnation is reached. It is 
however not guaranteed that this point will coincide with an acceptable 
quality of  .

2. Adaptive Sampling

Choosing the anchor points with Latin Hypercube sampling (LHS) [18, 19] allows 
a sufficient coverage of the parameter space, while avoiding undesired 
sampling effects at a smaller number of anchor points [20]. However, DEM 
simulations are computationally expensive, so adaptive sampling, similar to 
[21], was performed to further reduce the number of solver calls.

The general topology (i.e. global trends) of the metamodel can be estimated 
quite well in an exploration phase with relatively coarse sampling. In a 
refinement iteration, we can add anchor points in the interesting regions 
of the metamodel (i.e. where the predicted error Δtrg between simulation w 
and experiment u is low) and recalculate the metamodel. With the refined 
information on promising zones, we can then repeat the refinement for 
several iterations until stagnation is reached or the maximum computation 
budget is spent.

3. Optimization

Kriging models are smooth. Therefore, fast gradient based approaches 
can be used for optimization [21, 22]. The implementation of the Lagrangian 
NLPQL solver of optiSLang was used due to its numerical performance and 
accuracy [23, 24].

Validation

There are two sources for errors in the calibration process: numerical 
(insufficient metamodel quality) or systematic measurement errors and 
shortcomings in the DEM model. To exclude both, two separate validation 
steps were performed.

Figure 4. Calibration Workflow in optiSLang.

Figure 5. 2-dimensional projection of the 
7-dimensional metamodel for Δtrg in % in 
relation to the two most influential parameters 
(RR and μd,P−B) at iteration 1 (Exploration) and 
10 (RIC).

Table 3. Number of anchor points n and total 
computational cost of the calibration in the 
drop test at different iterations | *after iteration 1.



5Calibration of Dem Simulations for Vertical Filling: How to Handle Randomness  //

1. Metamodel Validation

In order to ensure the prediction capability of the metamodel, a set of m 
validation simulation runs were performed at the supposed minimum xopt 
and their results w1, w2 ...,wm were averaged. The difference eopt = ŵopt − 

opt is a teller for the reliability of the metamodel at that point. If the error is 
unacceptably high, more anchor points should be added to increase the 
accuracy of .

2. Parameter Validation

To verify that the obtained parameter set xopt was viable outside the 
calibration scenario, validation simulations were performed in the respective 
scenarios shown in Table 1 (see p. 7) The results were obtained from m 
averaged simulation runs.

3. Randomness

In real life, the filling of the containers is a random process that cannot be 
reproduced in the next run, resulting in a partially random initial condition 
(RIC) of the bulk. This randomness is a physical property of the processes, 
influencing the outcome of the experiment.

The simulations were designed to account for that randomness, so a 
random and flat particle bed was created in the simulations before release. 
This added computational cost of around 37 seconds to the runtime of 110 
seconds per run on average (34%). Furthermore, the RIC increases solver 
noise.

Both increased cost and solver noise are undesirable from an engineering 
standpoint, while it is unclear if the physical randomness actually plays a 
significant role and if the additional effort is justified. In order to determine 
whether the implementation of the physical randomness is actually 
necessary, we also performed the calibration with an arbitrary but constant 
initial state (CIC).

/  Results
Table 3 shows the number of anchor points (simulated parameter sets) over 
the iterations. Figure 5 (see next page) shows a projection of a graphical 
representation of the metamodel after different iterations 1 and 10. The 
parameters found to be the most influential on the portion range trg were 
μd,p−b and RR. All other parameters are held constant near their respective 
optimum for low DEM model error. We observe only a slight change in the 
topology of the metamodel between Iteration 1 and 10. This suggests that the 
sampling could be stopped after iteration 1. 

However, to gain insight into the quality of the prediction of the metamodel, 
we also must assess the residuals e of Δtrg. Figure 6 shows the local residuals e 
of the metamodel in the same range as Figure 5. We find that uncertainty is 
quite high at iteration 1, especially in the area of low predicted errors Δtrg. This 
implies a bad estimate . After increasing the number of anchor points to more 
than twice the original count, at iteration 10, residuals were significantly lower, 
especially in the interesting areas of the metamodel.

Figure 7 shows the relationship between the residuals e in regions of low 
predicted errors Δtrg and iteration number for the entire parameter space. 
Stagnation begins after iteration 3, which suggests that adding samples does 
not improve the metamodel anymore [16].

Figure 6. 2-dimensional projection of the local 
residuals e of Δtrg for iteration 1 (exploration) and 
iteration 10 (RIC).

Figure 7. Residuals e of trg for the areas of the 
metamodel with low predicted DEM model 
errors Δtrg over iterations (RIC). The respective 
number of iterations used to calculate the 
residuals are shown as dotted lines.
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In the next step, the minimum error min (Δtrg) was determined on the 
metamodel with the NLPQL optimizer. The runtime was < 1 min. The 
metamodel was then validated at the supposed minimum xopt according 
to Table 1, showing a very good match (Figure 8). This confirms that the 
metamodel is indeed of high quality.

The optimized parameter set xopt was then used for the two validation trials as 
shown in Table 1. The results are shown in Figure 8. We find that the calibrated 
model exhibits a high fidelity in reproducing the experimental results. An 
overview over the accuracy of the DEM models is presented in Table 4.

The entire calibration process was repeated with a constant initial condition 
(CIC) before the drop. The results are shown in Figure 8. We obtain a nearly 
equally good result as in the case with the RIC. This suggests that the physical 
randomness was not crucial for the accuracy of the metamodel. This however 
could only be true for the particular initial condition chosen here.

/  Conclusion
We found that the selected drop test is a suitable experimental approach for 
DEM model calibration, yielding low prediction errors of a maximum of 2%. 
The calibration was repeated without physical noise, which yielded an equally 
good result. This suggests the conclusion that physical noise is not relevant for 
the calibration, however it still needs to be proven whether this is true for all 
initial conditions or only some.

/ Author

St. Kirsch (Robert Bosch Packaging Technology B.V.)

Figure 8. Results of calibration in the drop test 
(RIC and CIC), validation of metamodel after 
optimization and parameter validation in the 
drop test with A□,2 > A□,1.

Table 4. Actual error of trg for metamodel 
validation and for the eventual calibrated 
parameters x for the random initial condition 
(RIC) and constant initial condition (CIC). 
Simulations were performed m=20 times and 
their results averaged.
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