Ansys

Powering Innovation That Drives Human Advancement

Adaptive Geometry Templates in Ansys Motor-CAD

Jonathan Godbehere, PhD

Agenda

Motor-CAD Templates and geometry customization Introduction to Ansys Motor-CAD Adaptive Templates Adaptive Template Creation

Workflows into other Ansys products

Getting started

Summary

Ansys Motor-CAD Geometry Templates and Customizations

Geometry Templates – Advantages

- Large range of parameterized templates: motor/rotor/slot type, rotor/stator ducts...
- Parameterization by dimensions and or by ratio for efficient design space exploration.
- Comprehensive model setup:
- Automated export into Ansys optiSLang for optimization

Options for Customization in Ansys Motor-CAD 2023 R2 – Part 1

- Engineers wish to customize the geometry as a design progresses:
 - To maximize multiphysics performance
 - To capture manufacturing requirements
 - To optimize the design
- Two options were possible in previous versions of Motor-CAD:
 - DXF drawing import
 - Limited internal/external scripting.

Options for Customization in Ansys Motor-CAD 2023 R2 – Part 2

- Some engineers have created automated workflows in the past:
 - Create a .dxf drawing in a 3rd party tool
 - Automating the creation of a drawing file was often very complex
 - New geometry templates would need to be created from first principles
 - Old internal scripting was very limited
- Therefore, this kind of workflow was rare with many E-machine designers instead:
 - Relying on drawing software to create their customizations
 - No automation means no scalability!

Enter: Ansys Motor-CAD 2024 R1 – Adaptive Templates

- The aim:
 - Provide engineers more freedom with geometry creation
 - Provide tools to enable this customization
 - Maintain the same ease-of-use seen with standard templates
- The benefits:
 - Automation and scalability
 - Faster motor design
 - New opportunities for optimization
 - Better Motor performance

Overview of Ansys Motor-CAD 2024 R1 Adaptive Templates

Ansys Motor-CAD 2024 R1 – Adaptive Templates Overview

- Released February 6th, 2024
- Embed Python commands to reparametrize and customize the inbuilt template geometry
- Add custom geometry parameters
- Flexibility to innovate with the speed and ease of the templated geometry
- Enables IP library to be built up

Adaptive Templates Demonstration

- LIVE DEMO
- New Geometry Editor Window
- Load in a Python script
- Define Adaptive Parameters
- See the geometry update

The Adaptive Templates and the Physics Modules of Ansys Motor-CAD

Adaptive Templates & Electromagnetics

- The electromagnetic module is the starting point
- Available to all motor types
- 2D FEA will solve the adapted geometry directly
- Automation of the model is maintained:
 - Meshing, materials, calculation, winding setup, etc.
- Make use of adaptive templates anywhere the FEA is used:
 - Lab module (efficiency mapping and duty cycles)
 - Saturation map export
 - Noise Vibration Harshness (NVH)

Adaptive Templates & Mechanics

- Rotor stress analysis:
 - 2D FEA will solve the adapted geometry directly
 - No additional setup necessary
- Noise & Vibration Analysis:
 - Force calculation uses adaptive template (E-mag)
 - Operating point calculation uses adaptive template (Lab)

Adaptive Templates & Thermals

- Adaptive templates can only be applied to:
 - Active components (stator, rotor, magnets, banding/sleeve and shaft)
 - Radial cross-section
- Thermal model setup primarily follows the standard cooling templates
- Major customizations on the cooling are best served via changes to the thermal circuit
- However, cross-sectional area and the mass of components updates with the adaptive template:
 - Thermal masses & capacitances
 - 2D thermal FEA for calibration

Adaptive Template Creation

Adaptive Template Motor Examples

- Example 1: Creating a trapezoid rotor duct
 - Convert a square "standard" rotor duct into a trapezoid
 - We will introduce new parameters to define it
 - We'll show the typical workflow for creating a new adaptive template

Trapezoid Rotor Duct, the Editor Window

- Dedicated Geometry -> Editor window:
 - Geometry defined into groups
 - Sub-groups have regions
 - Regions have entities (lines, arcs), points (co-ordinates in polar or cartesian) and material definitions
- The Graphical User Interface helps with the customization process

Trapezoid Rotor Duct, Python Scripting

- We can create new regions or make modifications to existing ones.
- However, the main principle of the scripting is to make changes on top of the standard geometry:
 - Significant reduction in the effort required
 - Most customized geometries share many base dimensions with a template: position of magnets, slot, conductors, inner & outer diameter
 - Customizations will adapt to large changes in the motor geometry – perfect for optimizations
 - Automatic setup of the thermal model, conductors, etc.

Trapezoid Rotor Duct, Example Scripting Workflow – Part 1

- Start with a rectangular rotor duct from the standard geometry templates:
 - Minimize the scripting required
 - Keep the thermal model setup
- From the Motor-CAD editor window find the relevant region name and the Index number.
- Via Python script, grab the entity and a huge amount of information is automatically calculated:
 - Start/end co-ordinates (xy or rt)
 - Length, midpoint, gradient, angle from x/y-axes
 - These can be used for geometry manipulation

Ansys

Trapezoid Rotor Duct, Example Scripting Workflow – Part 2

 A PyMotorCAD function can plot regions to help with scripting and debugging:

6 draw_regions(duct_bottom_half)

Define a new adaptive template parameter to create a trapezoid:

Name	Value	Description	I
trapezoid_top_width_ratio	0.5	The proportion of the top of the trapezoid compared to the bottom	1

Calculate a new Y value and edit p1

Update the region and the lines have automatically shifted

Trapezoid Rotor Duct, Example Scripting Workflow – Part 3

- Half of the region has been reshaped from a square to a trapezoid
- Use the PyMotorCAD mirror command to easily generate the co-ordinate on the opposite side of the D-axis:

d_axis_mirror_line = get_rotor_d_axis_mirror_line()

MirroredCoord = Coordinate.mirror(Coord1_New, d_axis_mirror_line)

• Update the region and the adaptive template is complete!

Adaptive Template Motor Examples

- Example 2: Advanced rotor pocket shaping with Bezier curves
 - More advanced geometry definition to show what is possible
 - Introduction to alternative methods of defining complex shapes

Rotor Pocket Shaping with Bezier Curves – Part 1

- The previous examples were all created using two types of geometry: line and arc
- More freeform shapes may be made up of many arcs
 - 4 parameters needed for every arc
 - Start, end, centre of arc and radius
- Instead, we can create shapes from several co-ordinates + a function for a curve
- Bezier curves are a common mathematical function used for this purpose (polyline is another).

/\nsys

Rotor Pocket Shaping with Bezier Curves – Part 2

- Starting with a standard template, the start and end-coordinate for the rocket pocket is found.
- Several adaptive parameters are created and combined with a python package for Bezier curves.
- Aim: gather a set of co-ordinates along the geometry

Name	Value	Description
bez_curve_projection	13	How far from the magnet the rotor pocket extends.
upperconvex	0.2	Magnitude and direction of the curvature on the top arc, closest to airgap
lowerconcave	-0.2	Magnitude and direction of the curvature on the bottom arc, closer to the shaft

Rotor Pocket Shaping with Bezier Curves – Part 3

- A PyMotorCAD command can convert a set of co-ordinates automatically into a list of lines and arcs.
- The functions fits lines and arcs to the provided co-ordinates, with a given tolerance.
- The output is a minimized set of arcs and lines, which can be used to create a new adaptive template region.

• LIVE DEMO

bez_curve_entities = return_entity_list(xylist, linetolerance, arctolerance)

Python Scripting, PyMotorCAD and GitHub

- PyMotorCAD in 2024 R1 now contains:
 - Many new and powerful functions to aid custom geometry creation
 - Expanded guides to help users get started
 - Regularly updated throughout the year!
- GitHub is an open-source community
 - Download, use and alter existing examples
 - Ansys created as well as user submitted
- Engineers can build up their own internal libraries of motor geometries, easily scalable to any Motor design

Py/\nsys Getting starte	d User guide API reference Examples Contribute	Ctrl+K dev• D 🖓 🗩
ection Navigation	Create the Adaptive Templates geometry	
Section Navigation Adaptive templates examples Triangular Rotor Notches for IPM Curved Rotor Flux Barriers for SYNCREL U-Shape Advanced examples Basic examples Internal scripting examples Linking examples	<pre>For each notch to be added: • Calculate the angular position of the notch in mechanical degrees • Apply the offset angle. For notches on the left side of the pole, the position is shifted by (* notch_angle mechanical degrees. For notches on the right side of the pole, the position is shifted by (* notch_angle mechanical degrees. • Create the notch Region using the <u>triangular_notch()</u> function, imported from <u>ansys.motorcad.core.geometry_shapes</u>). The arguments for the function are: • rotor_radius • notch_angle; • notch_centre_angle • notch_depth • Define the properties for the notch region • name • colour • duplication angle • material • set the notch's <u>parent</u>) to the rotor region. This will allow Motor-CAD to treat the notch as a sub-region of the rotor and handle subtractions automatically. • if the notch is closed, set the region in Motor-CAD. for notch_loop in range(0, number_notches): notch_entre_angle = (duplication_angle / (2 * number_notches) # angular position of notch notch_entre_angle = (duplication_angle / notch_angle if notch_centre_angle = (duplication_angle / 2: notch_entre_angle = (duplication_angle / 2: notch_entre_angle = (duplication_angle / 2: notch_centre_angle = (duplication_angle / 2: no</pre>	 Image: End of the second secon
	<pre>notch.duplications = rotor_region.duplications notch.material = "Air" notch.parent = rotor_region if notch.is_closed():</pre>	

Workflows in Other Ansys Products

Ansys Tools and the Adaptive Templates of Ansys Motor-CAD

Ansys Ansys

MAXWELL

OPTISLANG

DISCOVERY

Ansys Motor-CAD & Ansys optiSLang – Motor Optimization

- Any adaptive template parameters created by a user, can be found within the Motor-CAD to optiSLang export window.
- The adaptive template script will move automatically with the export into optiSLang.
- A PyMotorCAD function can be used to check if geometry is valid (overlapping)

🇱 Ansys optiSLang Export	_		\times							
Input Parameters Requirements Objectives Summary Test Run										
Adaptive template \checkmark										
Parameter	Value	Max	Value							
bez_curve_projection	12	5	1	5	1					
upperconvex	0.2	-1.5	1	.5	1					
lowerconcave	-0.2	-1.5	1	.5						
<		·			>					

🔋 s	ensitivity	/										-		×
Par	rameter	Start de	signs Crit	eria Dyna	mic sam	pling O	ther	Result design	5					
	Name			Paramete	r type	Referenc	e value	Constant	Value type	Resolution	Ra	nge	Range	plot
1	bez_curve_projection Optimizat		on	12			REAL	Continuous	5	15				
2 upperconvex			Optimization 0.2				REAL	Continuous	-1.5	1.5				
3	3 lowerconcave		Optimization -(-0.2	-0.2		REAL	Continuous	-1.5	1.5			
4	L1_Magnet_Bar_Width_Ratio		Optimizati	timization 0.81193			REAL	Continuous	0.7	0.9				
5	L1_Pole_Arc_Ratio		Optimizati	Optimization 0.510466				REAL	Continuous	0.4	0.6			
6	L1_Magnet_Thickness		Optimization		6			REAL	Continuous	5	7			
7 L1_Bridge_Thickness			Optimization 2				REAL	Continuous	1	3				
Para	meter mer	rging: Pre	fer defined	\sim						Imp	ort pai	ameter	r from syste	m 🔻
Date Time Log level Hld Message														
1 2024-Jan-16 09:04:44.892270 INFO_DETAIL License feature checkout requested (first of): optislang_level2 [in 2										quested .2 [in 2	00			
9	Show add	ditional opt	ions							ОК	С	ancel	A	pply

Ansys Motor-CAD & Ansys Maxwell – Advanced Electromagnetics

- Exporting into Maxwell will carry across the adaptive template geometry!
- However, currently the geometry is fixed and will not carry across the parameterization.
- Bringing the parameterization across is on the roadmap.
- The Motor-CAD to Discovery export follows a similar process.

Getting Started

Ansys Motor-CAD 2024 R1 – Adaptive Templates Tutorial

• A tutorial is installed locally with 2024 R1:

> OS (C:) > ANSYS_Motor-CAD > 2024_1_1 > Tutorials >	Adaptive_Templates
Name	Date modified
Adaptive_Templates_Example_1	11/12/2023 14:05
Adaptive_Templates_Example_2	11/12/2023 14:04
🛃 Adaptive_Templates.pdf	23/11/2023 15:21
Adaptive_Templates_Example_1.mot	15/11/2023 10:13
Adaptive_Templates_Example_1.py	15/11/2023 09:53
Adaptive_Templates_Example_2.mot	03/01/2024 14:31
Adaptive_Templates_Example_2.py	17/11/2023 18:57
Adaptive_Templates_Example_2_Debug.py	15/11/2023 09:53

- 0 sys Motor-CAD v2024.1.1 (Adaptive Templates Example 1.mot) Model Motor Type Options Defaults Editors View Results Tools Licence Print Help rometry 📘 Winding 🛛 🗹 Input Data 🗧 👫 Calculation 🖉 E-Magnetics 🔠 Output Data 🛛 🖉 Graphs 🖉 Sensitivity 💽 Scripting adial 🖶 Axial 🔛 Editor 109 3D cometry Adaptive Templates C Rotor Notch 0 Shaft Name Rotor_Notch_ (61.991, 19.545) (61.819, 16.564) Line Adaptive Regis (61.819, 16.564) (63.459, 14.068) Material (63.459, 14.068) (61.991, 19.545) 2 89375 (0, 0)
- The tutorial goes through the fundamentals of the feature: the Motor-CAD GUI, scripting etc.
- The tutorial comes with two examples:
 - Adding a V-shape rotor notch
 - Converting the Synchronous reluctance U-IPM template into a curved barrier

(54 64 45 53

Ansys Motor-CAD 2024 R1 – PyMotorCAD & GitHub

- Check in on PyMotorCAD for regular updates
 - More detailed guides to help with python scripting
 - New adaptive template examples
- Find the link from within Ansys Motor-CAD, Help -> PyMotorCAD documentation

Summary

Ansys Motor-CAD 2024 R1 – Adaptive Templates

Enable Engineers to:

- Easily create customized shapes
- Maximize multiphysics motor performance
- Build up IP library

Major Benefits:

- Flexibility to innovate with ease
- Faster motor design
- Increased automation & scalability

- New opportunities for optimization
- Better motor performance

