Ansys

Powering Innovation That Drives Human Advancement

Design Optimization of a Synchronous Reluctance Electric Motor using Deep Learning Technology

Nicolas Rivière, Senior Application Engineer at Ansys March 13, 2024

Content

Background and motivations

Synchronous reluctance (SyncRel) machine

• Viable option for automotive applications:

- PM-free machine
- overload and fault tolerant capabilities
- reduced material cost, price and supply risks

• SyncRel machines vs PM-based machines:

- lower torque/power density, cycle efficiency
- limited performance at high speed operation
- higher torque ripples across operating range
- design optimization can be more challenging
- Rare-earth free / reduced rare-earth based PM used to boost performance (PMaSyncRel)
 - ferrite, dysprosium-free Neodymium magnets

SyncRel design optimization

Challenges:

- Discrete number of flux barriers / flux guides
- Variety of barriers' shape (fluid, circular, ...)
- Many parameters due to complex rotor geometry
- Conflicting performance across the design space

Methods:

- as of today: parametric optimization using CAE data
- avenue: shape optimization using CAE and CAD data

Proposed workflow

• Workflow that combines **Ansys Motor-CAD** (MCAD) **Neural Concept Shape** (NCS) tools:

- MCAD is an integrated multi-physics design software mostly used for the concept design stage of electric motors.
- NCS builds CAE and CAD-based predictive models from deep learning technology that can be used for design optimization.
- Input CAD and CAE data are generated by MCAD and used by NCS to build accurate deep learning models.

NCS pipeline overview

- NCS does not work from a parameter space but from the **design shape** directly.
- Potential **benefits** with respect to more conventional parametric optimization :
 - go beyond the initial parameter space and get out-of-the-box design geometries,
 - reduced computations times and increased accuracy from predictive models.
- NCS pipelines split into tasks from the dataset definition to design optimization.

SyncRel motor use case

Specification

• Requirements:

- Peak performance across speed range
- Rotor mechanical stress at high speed
- Thermal and electrical limits
- Rotor and stator active space envelopes

Goals:

- Minimum torque ripples @ 5krpm
- Maximum peak power @ 16krpm

Parameter	Unit	Value
Maximum speed	rpm	16000
Operating temperature	°C	80
DC bus voltage	V	720
Peak phase current	Arms	460
Active length	mm	200
Stator diameter	mm	220
Split ratio	[-]	0.67
Airgap	mm	0.7
Peak torque	Nm	≥ 300
Peak power	kW	≥ 200
Peak stress @ 18krpm	MPa	≤ 450

Design choices

- 54-slot, 6-pole, 3 to 4-layer topology
- 3-ph, 6-layer hairpin winding (18 turns)
- N27 0.27 electrical steel, copper winding

Design optimization walk through

Dataset definition

• CAE (*json) and CAD (*dxf) data are created from MCAD and imported into NCS.

🔚 Outputs_Design0003.json 🛛		
1 📮 (
2	"peak_Shaft_Torque_MaxValue": 280.66037272517065,	
3	"peak_Shaft_Power_MaxValue": 211149.01667721182,	
4	"peak_Shaft_Power_16000rpm": 80571.7892771748,	
5	"Rotor_Lamination_Stress_max_18000rpm": 497.766163230059,	
6	"Ll_Average_Magnet_Bridge_Stress_18000rpm": 248.626666666667,	
7	"L2_Average_Magnet_Bridge_Stress_18000rpm": 105.9386666666667,	
8	"L3_Average_Magnet_Bridge_Stress_18000rpm": 43.366,	
9	"L4_Average_Magnet_Bridge_Stress_18000rpm": 0,	
10	"Torque_Ripple_MsVw_percent_16000rpm": 35.7521567394084,	
11	"Torque_Ripple_MsVw_percent_5000rpm": 37.9687061909912,	
12	"Ll_Centre_Post_Avg_Stress": 416.246666666666666666666666666666666666	
13	"L2_Centre_Post_Avg_Stress": 225.806666666666664,	
14	"L3_Centre_Post_Avg_Stress": 74.6900000000003,	
15	"Barriers_Nb": 3,	
16	"Stress_Av_Max": 416.246666666666666666666666666666666666	
17	"Saturation_Ratio": 0.3802402053545106	
18 L}		

MCAD parameterization

Rotor parameterization:

- ratio-based parameterization to leverage a large initial design space,
- custom parameterization through customized python scripting.

• Rotor parameters varied:

- flux barriers' shape / dimensions,
- ribs' dimensions (radial / tangential),
- lamination corner rounding.

MCAD simulation

• A python script automatically runs a sequence of analysis within Motor-CAD modules.

Conversion, Processing & Stats

- **Conversion**: converts the dataset into a format that can be consumed by the predictive models.
- Processing & Stats: prepare the data for the training task and allow to remove outliers, if any:
 - **physics outliers**: inconsistent and or out-of-distribution CAE data.
 - geometric outliers: broken or invalid design geometry.

Physics outliers

• Outliers can be detected to get consistent distributions of data

• In this workflow, only few sample were removed from the dataset.

Visualization

• Shows the data processed for the training.

Visualization of 10 samples in NCS

Training

- **Predictive models** are produced using machine learning algorithms:
 - one deep learning model is trained to predict performance from an input shape,
 - another one learn the geometric features to create new shapes.
- Confidence indicators can be used as forecast quality measures.

Performance predictions

Max stress

r2= 0.929

2000

4000

Ground Truth

6000

6000

4000

2000

0

Prediction

19

Optimization

- The predictive models for the motor rotor geometry and performance are combined to perform a multi-objective optimization:
 - optimization algorithm: genetic
 - population size: 500
 - evolution steps: 50

/\nsys

Solution space

🔚 scalars_sample_60.json 🛛

- -{"Rotor Lamination Stress max 18000rpm pred": 429.16180419921875, 2 "Rotor Lamination Stress max 18000rpm var pred": 5808.84375,
- "Stress Av Max pred": 361.88482666015625, 3 "Stress Av Max var pred": 1601.6605224609375, 4
- 5
- "Torque Ripple MsVw percent 5000rpm pred": 16.978830337524414, "Torque Ripple MsVw percent 5000rpm var pred": 29.6673641204834, 6
- "peak Shaft Power 16000rpm pred": 88424.3828125, 7
- "peak_Shaft_Power_16000rpm_var_pred": 3686232.25, 8
- 9 "peak Shaft Power MaxValue pred": 222469.625,
- 10 "peak Shaft Power MaxValue var pred": 5231972.5,
- "peak_Shaft_Torque_MaxValue_pred": 304.12310791015625, 11 12
- "peak Shaft Torque MaxValue var pred": 16.118377685546875)

Example of result files from NCS

Pairwise Pareto fronts per iteration

o_power_16krpm

Validation

- Shapes from the deep learning-based optimization are sent to MCAD for validation.
- Samples are loaded and simulated using the adaptive template functionality (2024 R1).

MCAD predictions

Performance across the Torque ripples @ 5krpm vs Peak power @ 16krpm*

- Performance data are shown across the Torque ripples vs Peak power @ 16krpm plane.
- MCAD and NCS data match quite well with each other in terms of objectives.
- Designs highlighted in red in the bottom left are validated within 2% of the constraints.

*Results visualized in the Ansys optiSLang postprocessing tool

23

OBJ: obj_peak_Shaft_Power_16000rpm vs. OBJ: obj_Torque_Ripple_MsVw_percent_5000rpm, (linear) r =-0.503 MCAD predictions Feasible designs Motor-CAD SVM [MPa] 366.573822 75.8228 e'c -1.1 -1 -0.Ð OBJ: obj_peak_Shaft_Power_16000rpm [1e5] -0.8 -0.7 Peak performance 300 200 250 (MM) 150 § 200 (J 200 Mechanical 100 ⁶ Shaft 150 stress 5 50 100 2000 4000 6000 8000 10000 12000 14000 16000 0 Speed (rpm)

Conclusion and next steps

Conclusion

- The rotor of a **SyncRel motor** was optimized for minimum torque ripples and maximum power within strong electromechanical requirements.
- The **design optimization** workflow combines the **deep learning technology** of Neural Concept with the multi-physics simulations of Ansys Motor-CAD.
- The predictive models trained on Motor-CAD CAE and CAD data were used by a genetic algorithm to find optimal shapes for the desired requirements.
- Pareto design solutions were sent to Motor-CAD for validation and results showed a good agreement with Neural Concept Shape predictions.

Next steps

 Import the MCAD validated CAE and CAD data into NCS for improving deep learning models along with optimization results.

• Automate the workflow as much as possible, especially the MCAD-NCS coupling at the data definition and validation stages.

- Apply this innovative motor design optimization workflow to:
 - other machines types, e.g **PM-based motor topologies**,
 - the **detailed design stage**, e.g fine-tune air pocket for reduced NVH.

Motor-CAD

