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Synchronous reluctance (SyncRel) machine

• Viable option for automotive applications:

- PM-free machine

- overload and fault tolerant capabilities

- reduced material cost, price and supply risks

• SyncRel machines vs PM-based machines:

- lower torque/power density, cycle efficiency

- limited performance at high speed operation

- higher torque ripples across operating range

- design optimization can be more challenging

• Rare-earth free / reduced rare-earth based 
PM used to boost performance 
(PMaSyncRel)

- ferrite, dysprosium-free Neodymium magnets

Design of synchronous reluctance and permanent magnet 
synchronous reluctance machines for electric vehicle application

PMaSyncRelSyncRel
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SyncRel design optimization

• Challenges:

- Discrete number of flux barriers / flux guides

- Variety of barriers’ shape (fluid, circular, …)

- Many parameters due to complex rotor geometry

- Conflicting performance across the design space

• Methods:

- as of today: parametric optimization using CAE data

- avenue: shape optimization using CAE and CAD data

Radial rib

Flux guide

Flux barrier

Tangential rib
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Proposed workflow

• Workflow that combines Ansys Motor-CAD 
(MCAD) Neural Concept Shape (NCS) tools:

- MCAD is an integrated multi-physics design 
software mostly used for the concept design 
stage of electric motors.

- NCS builds CAE and CAD-based predictive 
models from deep learning technology that 
can be used for design optimization.

• Input CAD and CAE data are generated by 
MCAD and used by NCS to build accurate 
deep learning models.
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NCS pipeline overview

• NCS does not work from a parameter 
space but from the design shape directly.

• Potential benefits with respect to more 
conventional parametric optimization :

- go beyond the initial parameter space and 
get out-of-the-box design geometries,

- reduced computations times and increased 
accuracy from predictive models.

• NCS pipelines split into tasks from the 
dataset definition to design optimization.

Optimization
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SyncRel motor use case
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Specification

• Requirements:

- Peak performance across speed range

- Rotor mechanical stress at high speed

- Thermal and electrical limits

- Rotor and stator active space envelopes

• Goals:

- Minimum torque ripples @ 5krpm

- Maximum peak power @ 16krpm

Parameter Unit Value 

Maximum speed rpm 16000

Operating temperature °C 80

DC bus voltage V 720

Peak phase current Arms 460

Active length mm 200

Stator diameter mm 220

Split ratio [–] 0.67

Airgap mm 0.7

Peak torque Nm ≥ 300

Peak power kW ≥ 200

Peak stress @ 18krpm MPa ≤ 450
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Design choices

• 54-slot, 6-pole, 3 to 4-layer topology

• 3-ph, 6-layer hairpin winding (18 turns)

• N27 0.27 electrical steel, copper winding 
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Design optimization walk through
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Dataset definition

• CAE (*json) and CAD (*dxf) data are created 
from MCAD and imported into NCS.
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MCAD parameterization

• Rotor parameterization:

- ratio-based parameterization to 
leverage a large initial design space,

- custom parameterization through 
customized python scripting.

• Rotor parameters varied:

- flux barriers’ shape / dimensions,

- ribs’ dimensions (radial / tangential),

- lamination corner rounding.
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MCAD simulation

• A python script automatically runs a sequence of analysis within Motor-CAD modules.

START

Saturation 
model

Peak 
performance

Weights Operating 
point calc.

Torque 
ripples

Geometry
Coupled 

EMag FEA

Geometry 
checking

END

Rotor stressGeometry

*dxf 
creation

EMagLab Mech. 



15 ©2024 ANSYS, Inc. 

Conversion, Processing & Stats

• Conversion: converts the dataset into a 
format that can be consumed by the 
predictive models.

• Processing & Stats: prepare the data for 
the training task and allow to remove 
outliers, if any:

- physics outliers: inconsistent and or out-of-
distribution CAE data.

- geometric outliers: broken or invalid design 
geometry.
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Physics outliers

• Outliers can be detected to get consistent distributions of data

• In this workflow, only few sample were removed from the dataset.

outliers
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Visualization

• Shows the data processed for the training.

Visualization of 10 samples in NCS
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Training

• Predictive models are produced using 
machine learning algorithms:

- one deep learning model is trained to 
predict performance from an input shape,

- another one learn the geometric features to 
create new shapes.

• Confidence indicators can be used as 
forecast quality measures.
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Performance predictions

Max stress

Max torque

Max power
Torque ripples

Power @ 16krpm
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Optimization

• The predictive models for the motor rotor 
geometry and performance are combined 
to perform a multi-objective optimization:

- optimization algorithm: genetic

- population size: 500

- evolution steps: 50

Optimization
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Solution space

Example of result files from NCS
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Validation

• Shapes from the deep learning-based optimization are sent to MCAD for validation.

• Samples are loaded and simulated using the adaptive template functionality (2024 R1).
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MCAD predictions

• Performance data are shown 
across the Torque ripples vs 
Peak power @ 16krpm plane.

• MCAD and NCS data match 
quite well with each other in 
terms of objectives.

• Designs highlighted in red in 
the bottom left are validated 
within 2% of the constraints. 

Feasible designs within 2% (red)

Peak torque Peak stress

Max peak power

Performance across the Torque ripples @ 5krpm vs Peak power @ 16krpm*

*Results visualized in the Ansys optiSLang postprocessing tool
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MCAD predictions Feasible designs

Mechanical 
stress

Peak 
performance
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Conclusion and next steps
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Conclusion

• The rotor of a SyncRel motor was optimized for minimum torque ripples and 
maximum power within strong electromechanical requirements.

• The design optimization workflow combines the deep learning technology of 
Neural Concept with the multi-physics simulations of Ansys Motor-CAD.

• The predictive models trained on Motor-CAD CAE and CAD data were used by 
a genetic algorithm to find optimal shapes for the desired requirements.

• Pareto design solutions were sent to Motor-CAD for validation and results 
showed a good agreement with Neural Concept Shape predictions.
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Next steps

• Import the MCAD validated CAE and CAD data into NCS for improving 
deep learning models along with optimization results.

• Automate the workflow as much as possible, especially the MCAD-
NCS coupling at the data definition and validation stages.

• Apply this innovative motor design optimization workflow to:

- other machines types, e.g PM-based motor topologies,

- the detailed design stage, e.g fine-tune air pocket for reduced NVH.
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