Ansys Fluent Past, Present and Looking Forward

Adam Norman – Manager, Application Engineering

© Copyright 2023 ANSYS, Inc.

Year after year, Ansys Fluent's cutting-edge innovations

have helped engineers overcome the most challenging design obstacles imaginable when dealing with fluid-dynamics product problems

2018 : New Capabilities Highlights

Bringing to the market unique and unprecedented innovations in mesh generation

2018 : Increased Performance Highlights

Ansys's unique Mosaic[™] Meshing combines a hexcore bulk volume with polyhedral prism and transition cells at the boundaries for accurate flow resolution

Benefits

Up to 50% cells reduction compared to conventional Hexcore

Higher cell-quality than all-poly or Hexcore meshes

Lower memory consumption than all-poly

Higher solver performance than all-poly or Hexcore

2304

258.6

330.4

143.1

165.3

4608

423.4

610.8

759.2

1026.2

DPM domain method enhance

Default r18.2

DPM Domain R19.0

42.3

2018 : Increased Productivity Highlights

2019 : New Capabilities Highlights

A revolution in user experience along with innovations and improvements for performance and accuracy

//nsys

2019 : Increased Performance Highlights

CFL based Time Stepping

The CFL based time stepping is particularly useful when mesh adaption is used to capture the fine details that are present in transient flows in a more efficient manner

Pressure-based Solver Transient Speedup

Accelerated Time Marching scheme for the NITA method, which further improves speed for LES turbulence cases without boundary layer meshes providing up to a 5X speed up compared to the SIMPLEC iterative method, with comparable accuracy

Solver	Time	Speed up
SIMPLEC	15 h	1
NITA	6 h	2.3
NITA - Accelerated Time Marching	2.6h	5.8

2019 : Increased Productivity Highlights

Watertight Meshing Workflow (WTM)

Task-Based Fluent Meshing Workflow for clean CADs/Geometries to create highquality meshes with minimal training and effort thanks to intelligence and automation behind the scenes with up to 50% less hand on time.

Guided workflow based on meaningful tasks with status, warnings, etc. User can choose to modify task-list and save as a custom workflow.

Fault Tolerant Meshing Workflow (FTM)

Task-Based Fluent Meshing Workflow capable to generate meshes for even dirtiest CADs/Geometries with a dramatic 2x speedup.

The streamlined wrapper-based workflow can create high-quality meshes sealing leakages and holes (typical of external aero simulations, underhood / installation simulations, etc.) with an intuitive drag and drop part management.

2020 : New Capabilities Highlights

Focusing on performance while delivering innovations for multi-phase modelling and battery simulations

2020 : Increased Performance Highlights

2020 : Increased Accuracy Highlights

Eulerian multi-phase transition method based on Algebraic Interfacial Area Density (AIAD) approach

Suitable for a range of applications including loss of coolant scenarios in pressurized-water reactors Incorporation of sub-grid turbulence contribution for accuracy Mass transfer mechanisms to account for entrainment/absorption

With population balance can simulate dispersed phase size distributions

Fluent AIAD produces better match to experimental results

3D Battery Electrochemistry

Transient simulation of Li-ion transport during battery discharging/charging

Capacity Fade and Battery Life

Life model for battery's capacity loss during a long time period and capacity fade model for loss in short time period

GENTOP Transition Model

GENTOP (Generalized TwO Phase) model includes additional phase that can behave either as continuous or dispersed based on phase volume fraction critical bubble diameter.

GENTOP phase (resolved continuous/hybrid gas) flowing alongside the dispersed modeled phase

Adjoint GEKO Turbulence Model

GEKO sensitivity in adjoint solver shows how solution is affected by changes in GEKO parameters and help tune them

Nonadiabatic flamelets FGM

Improves accuracy in cases where heat loss/gain due to presence of cold walls, participating media can't be neglected

Premixed Flamelets

2021 : New Capabilities Highlights

2021 : Increased Performance Highlights

2021 : Increased Accuracy Highlights

Enables the transition from DPM to VOF (and viceversa) for multi-phase simulations

Ansys Fluent 19.0 introduced model transition VOF -> DPM

Distinct droplets in the VOF simulation are detected and replaced by DPM (i.e., mass-point) particles, and mesh is coarsened accordingly

Ansys 2021 R2 makes this transition bi-directional with DPM -> VOF

DPM particles falling onto a free liquid surface transition back into VOF formulation; mass-point particle replaced by mesh-resolved VOF liquid

adding also support for EWF <-> VOF

Surface Ablation Model

Built-in workflow for wall recession improves accuracy of hypersonic reentry and rocket engines simulation

Two Temperature Equation

Improve prediction of high-speed aerothermodynamics with additional equation for electro-vibrational energy

Adaptive High-speed Numerics

Adaptive method detects shocks and applies numeric correction to stabilize the solution based on shock strength

Adaptive Transition Time Stepping

Time step size gets updated from all cells until the VOF interface is detected for better model transition

Strained FGM Combustion

Addition of a strained FMG model for better flame stability particularly at lean conditions like lean blow out

2022 : New Capabilities Highlights

Major GPU technology advancements and open source assess to more sustainable CFD simulations

2022 : Increased Performance Highlights

2022 : Increased Accuracy Highlights

2022 : Increased Productivity Highlights

2023R2 Fluids Highlights

GPU Solver: Sliding interfaces

Model rotating and stationary components

- An efficient and robust sliding mesh algorithm
- Enhanced robustness of dramatically changing intersections
- Test case: F1 140M rotating wheels, URANS SST

1 GPU ~ 16 CPU nodes (704 cores) With 8 GPUs, solve 1000 steps in 40 minutes!

GPU Solver: Compressibility

The Fluent GPU solver now supports lowspeed compressibility in addition to incompressible flow

Centrifugal blower with compressible flow and sliding mesh

©2023 ANSYS, Inc.

-4.00e+00

[Pa]

GPU Solver: Turbulence

- Enhanced robustness
- RANS equation solution frequency controls for SBES

400 steps	Timing standard	Timing when updating k+∞ every 5 th step only
CPU (Milan 128 cores)	11792.5 [29.5 s/dt]	6533.2 [16.3 s/dt]
GPU (DGX 8 x A100)	357.6 [0.9 s/dt]	255.7 [0.6 s/dt]
Speedup	32.8 (1 GPU ~ 512 CPU cores)	27.2 (1 GPU ~ 435 CPU cores)

Auto external aero case, 156M with SBES, DGX: 8 x A100 80GB, enables less than 1 day turn-around

0.6 s per time step for 156M cell external aero calculation!

Lightweight Setup Mode

- Quickly view and edit your setup without loading the mesh
- Read/write are fast with minimal memory usage
- Support GPU Solver restart

Select file								?		×
.ook in:	🕂 C:\	Users\Downloa	ds			- G O	0	R	::	
S My Com	puter	Name		Size	Туре	Date Modified				-
a Results		 exhaust_sys fluent-box_ TaskObject TaskObject 	tem_33m.cas.h5 grey_DO.cas.h5 3.msh.h5 11.msh.h5	1.00 GiB 698KiB 806KiB 4.45 MiB	h5 File h5 File h5 File h5 File	4/22/2:11 PM 10/3/2:19 PM 8/23/2:24 PM 8/23/2:26 PM				i

• Supports command-line option -lite

• TUI command: file read-case-settings test.cas.h5

Parametric Workflows & Simulation Reports

- New Capabilities / Technologies
 - Sequential Design Point updates with GPU Solver
 - Report Export in Power Point Format
- Enhancements
 - Open Parametric Study in optiSLang
 - Initialize from Previous Design Point
 - Automatic Mesh Morph update
- Continuous Improvement
 - Table Validation and Column Sizing
 - Performance improvements

DBNS Solver and High-Speed Flow Applications

- Two-Temperature Model: you can now account for weak lonization for improved solution fidelity at hypersonic speeds
 - At very high-speed, plasma starts to form around hypersonic vehicle
 - Crucial for predicting communication blackout or degradation

- Built-In Gupta transport properties for one-Temperature model (Beta)
 - To improve solution prediction at <u>lower hypersonic</u> <u>speed</u> when one-Temperature model is used
 - Gupta curve fit used for Thermal conductivity and Viscosity

(previously using kinetic theory)

Streamlined Aeromechanics Workflow

System Coupling provides a streamlined workflow for Aeromechanic analysis

- Easily transfer real and complex mode shapes from *Mechanical Modal Analysis* to *CFD Aerodynamic Damping Analysis*
 - Accurate data mapping, with diagnostics
 - Visualize mapped results in Ansys EnSight
 - New in 23R2: Automatic geometry alignment between

Source: Mechanical Modal Analysis

Target: CFX Analysis

File Help	
✓ Library ✓ Reference Frame	e
 ✓ Instancing Instance-1 ✓ Coupling Participant > CFD Server > Mechanical Server Analysis Control < Coupling Interface 	t er
 > Interrace-1 Solution Control > Output Control Mapping 	
Solution Control Output Control Mapping Internal Name	Frame-1
Solution Control Solution Control Output Control Mapping	Frame-1 Automatic

Volume-of-Fluid option as Transport model

ANSYS Forte 2023 R2 Simulate (AAPZ9a9zxnq1dds)

Home	Geometry and Mesh	Models	Boundaries and l	nitialization C	ontrol and Execution	Help
File Open Save	Librar Librar Save As Prof Prof BC Ta	les Mixtures	Dispersed Phases Flame	speed Flamespeed Li	ibs. IC Tables Steady S ibs. IC Tables Steady S ibs. IC Tables Param. St Clip Planes Param. St	tate Utility Validate Pref
⊶ 👫 Geor ⊶ 🖏 Mest •- 🍺 Mode	metry n Controls els		Chemistry/Materials		2 😵 👗 😒	
- ❤ C ► ⊉ T _ E	Chemistry/Materials		 Global Gas Phase 	e Settings		
	Spray Model Spark Ignition Crevice Model		Equation of Stat	e Ideal Gas Ideal Gas Real Gas Use RGP File	·] 2	
- 🖬 🖏	Source Radiation ndary Conditions		Transport Model	Volume Of Fluid	1	*
⊷ 🐴 Initia ⊷ 📑 Simu	l Conditions Ilation Controls					

The Volume-of-Fluid option can be accessed on the Chemistry/Materials node:

- 1. Options in Transport Model include:
 - Mixture Eulerian 2-Phase
 - Volume Of Fluid (new in 23R2)
- Equation of State options are now effective for the gas phase in Mixture 2-Phase and VOF simulations:
 - Ideal Gas
 - Real Gas
 - Use RGP File (Beta for VOF)

VOF simulation of oil injection in the compressor

- Balance of mass flow rates of air and oil are verified;
- Currently validating the magnitude of mass flow rate and power;
- Planned study: effects of oil cooling of compressed gas and oil sealing of flow leakage.

Time = 0.00000 (sec)

Iso-surface: liquid volume fraction = 10%

Ansys Rocky 2023 R2 Highlights

Smoothed-Particle Hydrodynamics (SPH)

New cutting-edge **post-processing** capabilities, featuring **streamlines**, **flow tracers**, and innovative **boundary interaction statistics**.

Multiphysics Coupling

The drag force induced by a secondary fluid phase on SPH simulations, and reorientation support on the magnetic force module.

Performance Enhancements

1.70 s

Advanced Algorithms for Rendering and 3D Manipulation ensuring smooth visualization of massive STL (geometries) files.

... And More

Flexible fibers modeling enhancement, plus User interface and usability improvements.

