Ansys Solutions for Industrial IoT

Matt Commens

Ansys Product Management

© Copyright 2023 ANSYS, Inc.

High Frequency Structure Simulator

Electromagnetics 3D Finite Element Solution

Gold Standard for Accuracy Integrated interface

> 3D Modeling Automatic Meshing Post-processing

Inputs

Geometry Material Excitations Frequencies

Outputs

S-parameters Electromagnetic Fields Thermal Loads

HFSS Foundational Technology Breakthroughs for FEM

Spurious Free Vector Basis Functions

- Enables reliable FEM solutions of Maxwell's equations
- M. L. Barton, Z. J. Cendes, "New vector finite elements for three-dimensional magnetic field computation", *J. Appl. Phys.*, vol. 61, no. 8, pp. 3919-3921, 1987

Automatic Adaptive Meshing for Accuracy and Efficiency

• Z. J. Cendes and D.N. Shenton, "Adaptive mesh refinement in the finite element computation of magnetic field", *IEEE Trans. Magn.*, vol. MAG-21, pp. 1811-1816, Sept. 1985

Transfinite Element Method

- Enables highly accurate and efficient extraction of network parameters (S, Y, and Z)
- Z. J. Cendes and J. F. Lee, "The transfinite element method for modelling MMIC devices", *IEEE Trans. on Microwave Theory and Techniques*, vol. 36, no. 12, pp. 1639-1649, December 1988

Domain Decomposition Method

- Enables distributed memory computing
- Key for many advanced solver features
- M. N. Vouvakis, Z. J. Cendes, and Jin-Fa Lee, "A FEM domain decomposition method for photonic and electromagnetic band gap structures", *IEEE Trans. Antennas Propag.*, vol. 54, no. 2, pp. 721-733, February 2006

Key Capabilities: Automatic Adaptive Meshing

HFSS is accepted as the industry gold standard for accuracy

• This begins and ends with automatic **adaptive** meshing

Mesher and solver work hand in hand to...

- Determine where the mesh needs to be dense: **Efficiency**
- Represent the behavior of the electromagnetics: **Accuracy**

The physics defines the mesh, the mesh does not define the physics

Provides accurate and **reliable** solutions

Generate final designs through simulation

Eliminate prototypes, time and cost

ANSYS HFSS Innovations Through the Years

1989 HFSS v1.0

- Automatic adaptive meshing for accuracy
- Transfinite element method
- Vector finite elements with higher order

1999 HFSS v7

2005 HFSS v10

- Matrix multi-processing
- Spectral Decomposition Method (SDM), for parallel frequency points
- Distributed Solve Option (DSO), for parallel design points

2007 HFSS v11

- Iterative matrix solver
- 2008 HFSS v12:
- **Domain Decomposition (DDM)**
- **Mixed Order Elements**
- 2010 HFSS v12.1
 - HFSS-IE (3D MoM) with fast ACA solver
 - **DDM with Mixed Order Elements**

2011 HFSS v13

- Finite Element Boundary Integral (FEBI)
- HPC meshing and fields post-processing
- HFSS Time Domain Solver (hybrid), DGTD

2012 HFSS v14

- **Finite Antenna Array DDM**
- Hybrid FEM-MoM solver
- **HFSS-IE Physical Optics (PO) solver**

2013 HFSS 15.0

- Up to 2X faster matrix multi-processing
- **Parallel frequencies with MPI interconnect**

2014 HFSS R15.0.3

- Distributed memory direct matrix solver
- Hierarchical HPC, Parameters w DDM
- Phi meshing fast meshing for layered media
- **GPU support for HFSS Transient**
- 2015 HFSS R16
 - HFSS Time Domain Solver (implicit), FETD
 - Auto-HPC setup
 - **HFSS-IE MLFMM Fast Solver**

2016 HFSS R17

- Introduction of Savant SBR+ Solver
- GPU for frequency domain solver
- 2017 HFSS R18
 - Broadband adaptive meshing

S-parameter only matrix solve

Multi-level hierarchical HPC

2018 HFSS R19

- Improved GPU for Frequency domain
- HFSS SBR+ GPU, 5x speed up

2019 HFSS 2019R2

- Windows Azure Cloud
- Fast HFSS Solve auto-setup option

2020 HFSS 2020R1

- Improved distributed frequency efficiency
- Improved GPU performance for SI/PI designs
- Improved distribution for HFSS Regions in Slwave
- 2020 HFSS 2020R2
 - Reduced memory for Distributed Matrix solver
 - Direct matrix solve for 3D Component Array
- 2021 HFSS 2021R1
 - **HFSS Mesh Fusion**
 - Improved multi-port direct matrix solver
 - Improved iterative matrix solver

HFSS: Scaling to Extreme Complexity

B. Boots, HFSS Simulation Technologies that Solve • Complex Designs in Hours vs. Days Solving models with up to **100M+ unknowns** Large system analyzed for comprehensive EM couplings

0.7M unknowns

2000

Insys

"Gold standard" for device-level extraction

2005

10K unknowns single frequency10+ hrs

HFSS v1

1990

1995

HFSS: ...to Extreme Complexity and Beyond

 Today, 800M matrix unknowns, 8X capacity increase in two years

800M unknowns

In 2022 @"system-scale"

HFSS at Scale

The Ansys Electromagnetics Simulation Portfolio

The Internet of Things

The Internet Of Things Is Already Here!

HFSS

©2023 ANSYS, Inc.

Smart Motion Detection & Surveillance Camera

HFSS

©2023 ANSYS, Inc.

Thermal Analysis of LED Light Bulb

Smart Home HVAC System with Sensing Actuator

Ansys Industrial Drone Model

©2023 ANSYS, Inc.

Full Warehouse RF Modeling

Full Warehouse RF Interference System

Touchdown – Mission Accomplished ...

©2023 ANSYS, Inc.

Wireless channel modeling in *accurate* virtual twin environments

Simple geometry works for < 2 GHz (low FR1 bands)...

Open Street Maps city model with simple "block" buildings

...but for FR2 bands, better fidelity is needed.

aerometrex

5cm Resolution City Model Based on measurements

Denver city model courtesy of Aerometrex https://aerometrex.com > 10M geometry facets

©2023 ANSYS, Inc.

Real-Time high-frequency wireless channel and radar modeling

- Shooting and Bouncing Rays (SBR) EM simulation on GPU
- Physics-accurate antennas, environments and platform motion (including micro-Doppler)
- **Produces synthetic radar data** for switchable waveforms
- Operates at or near real-time on high-end Nvidia GPU devices for MIMO radar systems
- Available through API or through application mission simulation (STK or AVxCelerate)

Ansys Real Time Radar simulation applied to 6 radars on the same vehicle, showing synthetic range-Doppler signatures

Ansys GPU-SBR simulation applied to 5G MIMO wireless channel modeling, showing MRT adaptive beamforming

Introducing the STK RF Channel Modeler for 2024R1!

Frequency and Time domain response (Mobile-to-Mobile)

Complete wideband MIMO channel modeling at real-time rates

100 MHz Bandwidth channel modeled at 3.87 GHz Channels sampled every 0.01 sec over 120 sec

Scenario animation in STK

- 64 total channels sounded every 0.01 sec
 - Each BTS has 32 Rx channels
 - Each UE has 2 Tx channels
- 120 scenario seconds (2 minutes) computed
 - 12,000 soundings per channel
 - Total of 768,000 channel soundings
- 100 MHz bandwidth computed
 - 512 frequency samples/sounding
 - Total of 393,216,000 freq samples
- Data computed on Dell laptop with NVidia Quadro RTX5000 GPU
 - Approx 20 minutes to simulate in STK

UE1 to Base Station (UL) antenna/pol 1

Freq Domain - First Sweep 3.86 3.88 3.90 1e9 Channel Frequency (Hz)

Not shown: 63 additional channels (UE1/2 to gNodeB antenna system)

Ansys

Wideband Channel Modeling for mobile airborne subscribers

Future: Collaboration with Keysight for HiL radio testing/validation

Ansys STK RF Channel Modeler

Keysight PropSim/WaveJudge

100 MHz Bandwidth channel modeled at 3.87 GHz Channels sampled every 0.01 sec over 120 sec

Keysight PropSim GCM and WaveJudge show 5G Block-Level KPIs for Level1-Level2 emulation

5G Deployment and Aircraft Radar Altimeters

Ansys

Thank You

