Process Integration and Design optimization with AIML

Ralf Lampert, Global optiSLang Sales Director November 2023

© Copyright 2023 ANSYS, Inc. / Confidential

- Introduction
- What is PIDO Process Integration and Design Optimization
- Sensitivity Analysis for design understanding and/or Optimization
- Robustness Evaluation and Uncertainty Quantification
- Simulation Automation to Democratization
- AI/ML enabled Intelligent Engineering solution
- Q&A

Ansys Perspective: AI/ML approaches

Bottom-Up Methods

Organic ML Initiatives

- ML-based fast high-fidelity solvers
- ML-enabled enhancements
 - Initial meshing
 - Sub-modeling
 - User-Experience
 - Solution steering / settings
- ML-services across physics
 - C++ based deployment model

Top-Down Methods

Fast, Accurate, Predictive

- Design Optimization
 - Performance & operations scenarios
- Model Calibration
 - Plant & Controls integration
- MIL-SIL-HIL integration
 - Virtualization & acceleration
- Virtual Validation
 - Calibrated Plant and Controllers
- Lifecycle Exploration
- Plant & Controls integration

Special Initiatives Multi-Fidelity, Hybrids, Twins, Cloud

- 0/1/3-D Reduced Order Models (ROM) from Physics simulation
- Multi-Fidelity models: Physics + Data
- Digital Twins
 - Analytical, Data-driven, Hybrid
- Feature extractions from data for designs, performance and life
- API and UX for ecosystems
 - Partners, customer solutions
 - Cloud services
 - Autonomy and Swarms

Connect to Ansys optiSLang to perform parametric optimization

Ansys optiSLang provides a framework for Robust Design Optimization used in conjunction with physicsbased simulations to optimize product designs

<text><text><image><image><image><image><image><text><text><text><text>

Benefits

- Integrated within Ansys Products: Easy to Learn
- Workflow building: Flexible to Extend
- Integrate toolchains with 3rd party CAE tools
- Applicable to all industries

Improve Product Quality & Get to Market 10X Faster

Process Integration is needed to Automate Simulation Workflows

Adaptive Metamodel Approach (AMOP)

Reduce number of designs by smart design refinement

• Objective measure of prognosis quality = CoP (Coefficient of Prognosis) 0.05 DoE 0.04 Dista Determination of INPUT: sampling 0.03 - Relevant parameter subspace 0.02 0.01 - Optimal approximation model Add more 0.85 INPUT: Conical -0.550.018 NPUT: Generate 0.01 0.014 Radius • Approximation of solver output by fast competing samples to surrogate model without over-fitting metamodels meet criteria Moving Least Squares approximation of omega_damped Coefficient of Prognosis = 99 % Moving Least Squares approximation of omega_damped Coefficient of Prognosis = 97 % Coefficients of Prognosis (using MoP) full model: CoP = 89 % The winner is ... MOP Local CoP Local CoP 1.00 1.000 0.98 0.995 -22 INPUT: depth 0.96 16 10 % 0.990 -20 Calculate criteria 0.94 Criteria 0.985 Parameter 0.91 0.981 (e.g. forecast quality) INPUT: height 34 % fulfilled sensitivities 14 10 NPUT INPUT: thickness 34 % INPUT: radius $^{1}_{1.5_{2}_{2.5_{3}_{3}.5_{4}_{4.5}}}$ $^{1}_{15}$ 20 25 30 35 40 45 $m^{22.5}3_{3.544.5}$ 15 20 25 30 35 40 45 20 40 60 80 CoP [%] of OUTPUT: difference

AI/ML for all available data – 0D/1D/2D/3D/measurements

MOP for scalars

See the importance of parameters and how they work together.

Signal-MOP for signals & curves

Use relevance of parameters at different positions at a curve

quantity result deltaP F-CoP[Total] 99.5% creation time 2019-05-29 17:20:06 91.4% data time minimum value 34.4492% 83.3% maximum value 99.5308% 75.1% explained variation94.7949% 67% 0.00444 58.9% 50.7% 42.6% 34.4% Below 0.00266 0.00206 0.0122 0.0336 0.055 0.0764 0.0978

2D Field-MOP

for wavefronts, pictures,

Which parameter influences which

position in the picture?

deltaP (Result F-CoP[Total], type no

performance maps ...

3D Field-MOP for stress fields, temperatures ...

Shows importance of all relevant parameter in 3D Simulation.

Ansys

Increase design understanding

Increase of model fidelity & value

AI/ML Engineering Solutions

- Innovative design ideas
- Long simulation times
- Requirements initiate simulation-based optimization runs directly

- Carry-over designs (Business built on derivatives of past designs – incremental changes of designs)
- Built on ML-models (and/or instantaneous equations) only
- Machine learning is applicable
- Parameter spectrum known and manageable

Typical customer engagement process for simulation democratization

Multiphysics-Workflow with optiSLang and Mixing applications

Engineering Goals

- Enable more engineers to run standard CFD analysis
- Make it more stable, less manual and even flexible
- Overcome the problem of complex IT configuration for each user

Ansys Solution

- Parametrized geometry & mesh creation in SpaceClaim & Fluent meshing
- Parameter & Journal driven Fluent runs
- Automated simulation workflow driven by optiSLang
- Easy to use web frontend customized by python
- Auto-generated HTML report with all needed pictures, graphs, video and values

Benefits

- No local installation needed
- Use multiply queues to submit to cloud or company cluster
- User-friendly web frontend
- Faster product development
- Easy to switch from hardware tests to digital/virtual tests

Multiphysics-Workflow with optiSLang and Mixing applications

Knsys / oprisu «	ANC Mixing Wizard application			i O S built with pyowa 2282
	Geometry Settings		F1	uent Settings Documentation FORWara;
	Tank Parameters Value		Units	
	Shape Botom Type Height Liquid lavel Diameter Length Width Disk feight Cone Height Bottom Diameter Shaft Parameters Name Type Direction Diameter Direction Diameter XOffset XOffset Alpha Angle Beta Angle	Cylindical ▼ ASME6 ▼ 1600 100 1100 100 1000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200 2000 200	(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	Will Clearance Tank Diameter Tank Height Tank Shape Tank Height Tank Shape Update Event State Update Event State State State Collect State Disk Height State State State St
	Baffle Parameters Name	Value	Units	A high-level overview of geometry parameters can be seen above while general impeller parameters are shown below. For more detailed documentation and parameter definition, please go to the Documentation tab.
	Type Number Wall Clearance Height Width Thickness 2 Offset Angular Offset	Fair V > P > P > 100 10 300 >	(-) (mm) (mm) (mm) (7)	Blade Thickness Diameter Blade Angle Blade Height Blade Height Angular Offset
				PBT RDT RCI
	Impeller Settings Add impeller Create Mount Shult Fluid Flow Settings	Type Height [mm] [PET V E0	Diameter (mm) Z Offset (mm) 600 300	Angular Offset ['] Blade Angin ['] Blade Height (mm) Blade Width (mm) Blade Thickness (mm) 0 4 50 0 0 0 0

Ansys

Topology optimization meets Machine Learning

ML based Optimization of Differential Via

× + 0 - 0 × ∧ optiSLang 야 ☆ O 🌐 🗯 🌚 ← → C ① ① localhost:8080/wizards/webapp_workflow_21R2 Ansys Intelligent Engineering << via MOP Optimization 自 Projects Taper length of microstrips lop view Wizards A Taper length of strip lines Dog-bone cutout between vias Administration 120 Side view 0 Sign out Differential via design in an 18-layer PCB ↔ Back-drill diameter Via connects coupled microstrips on layer 1 to Stackup coupled strip lines on layer 7 · Specify thickness for: Substrate is FR4 d10: 3 - 6 mm d2: 3 - 6 mm d3: 3 - 6 mm d11:3-6 mm User input: d4: 3 - 6 mm d12: 3 - 6 mm TH. Specify thicknesses of certain dielectric layers of d5: 3 - 6 mm d13: 3 - 6 mm stackup d14: 3 - 6 mm d8: 3-6 mm du. d9: 14 - 17 mm d15: 3 - 6 mm Optimization goal: d16: 3 - 6 mm Maximum differential return loss (SDD11) from 0 to 40 GHz is minimized Placeholders Name Value Description d10_thickness 4.0 × ×

d11_thickness4.5×d12_thickness4.0×d13_thickness4.5×d14_thickness4.0×d15_thickness4.5×

Ansys Intelligent Engineering – Solution Stack

Ansys Intelligence Concept

- A solution framework that combines engineering simulation with data science to search, ٠ produce, and optimize validated product designs.
- This standardized, scalable solution hyper-automates product design using ML-based ٠ parametric optimization to streamline repetitive design and virtual testing efforts.
- Ansys optiSLang ٠

٠

- **Ansys Professional Services** •
- Ansys Minerva
- **Ansys Simulation Solvers**
 - HFSS, LS-Dyna. Mechanical, etc. •

- CAD Connectors ٠
- Customer-X AI/ML Solutions ٠

Connect

Ansys Intelligence Framework

Ansys Intelligence Workflow

Auto ML used in optiSLang – enabling non-experts to use ML

AI/ML integrated in optiSLang PIDO toolbox and workflows

- AutoML Framework combined with automated Simulation Workflow Building
- **MOP** (Metamodel of Optimal Prognosis): Workflow for automatic detection and training of best possible metamodel out of large range of surrogate models including
- AI/ML (Neural Network) integrated into metamodel competition = auto ML
- AMOP (Adaptive Metamodel of Optimal Prognosis): Framework for automatic refinement
- OCO (One Click Optimizer): AI enhanced optimization algorithm
- → Automatic generation of best metamodel and verification regarding forecast quality
- \rightarrow Based on the **most efficient** (self learning) design data base
- → Simulation Platform physics and vendor independent
- → After Simulation workflow setup democratize as App
- \rightarrow Enables **everybody** to use it

