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Ansys Fluent is a comprehensive computational fluid dynamics (CFD) software that allows you to model
fluid domains.

In this set of tutorials, we will introduce basic functionalities of Ansys Fluent through the Ansys
Workbench interface. Ansys Workbench is the integration and workflow platform that connects Ansys
products.

This tutorial will delve into the realm of compressible flow using Ansys Fluent. Specifically, we will
explore two distinct case types and illustrate the process of configuring boundary conditions and
solution settings required to perform these simulations.

This tutorial is #7 of a seven-part tutorial series that serves as an introduction to Ansys Fluent. Details
of the topics covered and the order can be found in the table below. These tutorials build on one
another, so it is recommended that they are followed in order. Other tutorials can be found on the
Ansys Education Resources site.

Tutorial Order Tutorial Topic

1 Introduction to Ansys Fluent

Mesh Sensitivity

Steady State vs. Transient

Aerodynamic Analysis Part 1

Aerodynamic Analysis Part 2

Heat Transfer with Ansys Fluent

N | o|jlu |~ ]JW|N

Compressible Flows

*This tutorial was created using the 2023R1 Student Version of Ansys Workbench. Some screens may

look different, depending on your version. Check the Ansys Learning Forum if you have any questions.

Exercise 1 — 2D Convergent-Divergent NOzzle: ........cooo o, 3
Exercise 2 — 2D Simplified High Speed Rocket: .......cccoooviiiiiieceee e, 7
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https://www.ansys.com/academic/educators/education-resources#t=EducationResourcesTab&sort=relevancy&layout=card?utm_campaign=academic&utm_medium=referral&utm_source=education-resource&utm_content=partner_cross-bu_educator-resource-link_case-study_download_na_en_global&campaignID=7013g000000gv7hAAA

https://forum.ansys.com/?utm_campaign=academic&utm_medium=referral&utm_source=education-resource&utm_content=partner_cross-bu_educator-resource-link_product-page_learn-more_na_en_global&campaignID=7013g000000gv7hAAA
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In this tutorial, we will delve into the realm of compressible flow using Ansys Fluent. Specifically, we
will explore two distinct case types and illustrate the process of configuring boundary conditions and
solution settings required to perform these simulations.

In this exercise, we will analyze compressible flow in a convergent-divergent nozzle. This exercise will
follow a similar analysis to the problems addressed previously.

The following image illustrates the solution conditions.

Pipe-Wall Pressure-Outlet:
Pressure-Inlet: DikEa
300000 Pa

Load the file ‘2D-Nozzle.step’ and open SpaceClaim! to verify its correct loading. Once you have
confirmed the successful loading, the first step is to apply an appropriate mesh. After you are satisfied
with your mesh, proceed to assign the relevant named selections.

W e nsys
2023 R1
STUDENT
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After completing the previous steps, open Fluent. In this simulation, we will introduce some different
conditions compared to our usual setups. The initial change required to simulate compressible flow is
to enable a density-based simulation in the general settings. Density-based simulation is designed for
high-speed compressible flow applications, whereas pressure-based simulation is typically used for
incompressible simulations.

1 Ansys Discovery is our go forward CAD tool, providing an improved user experience, it can be used to handle CAD instead
of SpaceClaim
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In addition, we will activate the energy equation while keeping the turbulence model set to k-omega
SST. Another crucial modification involves adjusting the cell-zone material settings to utilize the ideal
gas law for calculating density. It’s essential to specify this setting; otherwise, the density will remain

constant throughout the simulation.

BB Create/Edit Materials X
Name Material Type Order Materials by
air fluid ¥ || @ Name
Chemical Formula Fluent Fluid Materials Chemical Formula
air I
Fluent Database... |
Mixture ——
o | |6RANTA MDS Database...|
User-Defined Database...|
Properties
Density [kg/m”]| constant ~ | Edit...

Cp (Specific Heat) [1/(kg K)]

Thermal Conductivity [W/(m K)]

Viscosity [ka/(m s)] constant

constant -
ideal-gas
incompressible-ideal-gas
rgp-table
real-gas-soave-redlich-kwong
real-gas-peng-robinson
real-gas-aungier-redlich-kwong

real-gas-redlich-kwong Edit...
real-gas-nist
boussinesq -

¥ || Edit...

1.7894e-05

Change/Create | Delete | Help ‘

Edit...

Furthermore, we will customize our viscosity so that it varies with changes in temperature. We have
various options for defining this temperature-dependent variation as a function. For today’s lab, we
will employ the Sutherland model. However, if you have your own expression, whether it’s polynomial,
linear, or any other mathematical expression, you can input it into Ansys for viscosity modeling.

FLUENT
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. Create/Edit Materials
Name Material Type Order Materials by
air fluid ¥ || ® Name
Chemical Formula Fluent Fluid Materials Chemical Formula
air b
Fluent Database... ‘
Mixture ———
none ~ | |GRANTA MDS Database..._‘
User-Defined Database...‘
Properties
Density [kg{m‘][\dea\fgas * ||Edit... -
Cp (Specific Heat) [J/(kg K)] constant v ||Edit...
1006.43
Thermal Conductivity [W/(m K)] constant v ||Edit...
0.0242
Viscosity [ka/(m s)]| sutherland ot Edit..._|

PR

Change/Create | Delete | Help ‘

Configure the remaining conditions as indicated in the solution condition image shared earlier. After
setting these conditions, initialize the simulation and commence the run. Specify the number of
iterations as 2000 to allow the simulation ample time to converge. To confirm convergence, closely
monitor the residuals and ensure that they are progressively decreasing toward values below zero.

Ter0t Ansys
2023R1
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After the simulation has completed, let’s examine the velocity contour to visualize the flow within the
pipe.

5 \nsys FLUENT



THE UNIVERSITY OF

NEWCASTLE

AUSTRALIA

STUDENT
contour-1
Velocity Magnitude
5.198402
4 B7e+02 3 — Ypr—
4.15e:02 1
3.83e+02
3116002
2.5%:02
2.08e+02 d
1.568+02 p- LT S
104402
5198401
0.00e+00
[ms]

Given that we are simulating compressible flow with the energy equation enabled, we can also analyze
the temperature distribution and observe how the temperature varies within a shock wave. This will
provide valuable insights into the thermal characteristics of the flow.

2023R1

’xx»

Additionally, we can visualize the pressure contour throughout the simulation. This will help us gain
a comprehensive understanding of the pressure distribution within the system, which is crucial for
analyzing compressible flow behavior.

contour-1
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What can you conclude about the flow through this pipe? What would be the effect of increasing the
inlet pressure? Are these considered valid?

contour-1
Static P ressure
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Now, let’s proceed with a simplified 2D simulation of a rocket, which will enable us to investigate
symmetry and external compressible flows. The following is the case study that we will analyze in this
context.

Sky:
Zero-Shear

Velocity-Inlet: Pressure Outlet:
800 m/fs 0Pa

Air -

rYywyvwy
ry

Rocket
4

Symmetry

Load the provided 2D surface and verify that it loads into SpaceClaim correctly. Apply an adequate
mesh. The following is an example mesh.

Before closing the mesh tab, ensure that you have applied your named selections. The following image
depicts how they should be set up.
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Once you’re happy with your mesh and named selections move over to fluent, for this simulation we
will set the solution up as follows:

Density-based simulation
Cell zone - Air

Air - Density - Ideal gas
Air - Viscosity - Sutherland
Velocity Inlet - 800 m/s
Sky - Zero Shear

oOuneswNE

Once you have set your simulation up, initialize the calculation and solve over 2000 iterations. Ensure
the residuals are acceptable.

tes0y Ansys
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Let’s examine the pressure contour to visualize the shock waves experienced by the rocket.

Remember we can mirror about the y-axis by right clicking the wireframe

Ale
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We can also examine the velocity contour to visualize the wake and fluctuations in velocity caused by
the shock.
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We can also create a temperature contour plot to observe how the temperature fluctuates around the
rocket.

10 I\nsys / FLUENT



THE UNIVERSITY OF

NEWCASTLE

AUSTRALIA

Is this an optimal rocket design? How does the shock wave affect temperature and pressure?
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Document Information
This case study is part of a set of teaching resources to help introduce students to topics
focused on structures and structural simulations.
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To access more undergraduate education resources, including lecture presentations
with notes, exercises with worked solutions, MicroProjects, real life examples and more,
visit www.ansys.com/education-resources.
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If you notice any errors in this resource or need to get in contact with the authors,
please email us at education@ansys.com.
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