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Abstract 
The accurate element method (AEM) is a method developed for the numerical integration of the 
ordinary differential equations. The differential equations are discretized by dividing the computational 
domain in elements and reducing the solution to nodal values, similar to the finite element method. The 
solution over the elements is approximated using high-degree interpolation functions. A high-degree 
interpolation function would require a large number of unknowns per element. A prominent attribute of 
the AEM is the methodology developed for eliminating unknowns inside the element. As a result, the 
salient feature of the AEM is the decoupling between the solution accuracy and the number of 
unknowns. Consequently, high accuracy solutions are obtained using a reduced computational cost 
compared to traditional methods, such as the finite element method. The AEM uses the same approach 
to solve initial value problems, boundary value problems or eigenvalue problems. This paper is focused 
on computing the eigenvalues and eigenvectors for the axial vibration of trusses and transverse 
vibration of beams. The results obtained using the AEM were compared against finite element results 
obtained using ANSYS. For both trusses and beams, the accuracy of the eigenvalues computed using 
the AEM was several orders of magnitude higher than that of the finite element analysis, while the 
computational time was approximately the same.  

Introduction 
The various numerical methods recently developed in engineering may be considered as serving a 
common goal: solving in the best possible way the ordinary or partial differential equations describing 
the physical phenomena. This paper, restricted at this initial stage to solving ordinary differential 
equations (ODEs), presents a new method that allows generating accurate results with a small 
computational effort. This method, which we call the accurate element method (AEM), will be used 
herein to compute the eigenvalues of straight trusses and beams with constant and stepwise variable 
cross-section.  

The AEM can be compared with the displacement method (DM) and the finite element method (FEM). 
The strategy of these methods can be summarized by the following three steps: (1) discretization of the 
domain D  on which the governing equations must be integrated; (2) local approximation of the 
solution of the governing equations, in which the information given by each element is transferred to 
the nodes of the element; and (3) reconstruction of the domain D , obtained by writing nodal equations 
that bring together the information given by the elements adjacent to each node. The solution of the 
system of equations obtained in this way represents the nodal unknowns.  

The first and third steps of the AEM and the DM/FEM are similar. Differences between the AEM and 
the DM/FEM exist in the second step. The second step is crucial in obtaining an accurate solution of 
the governing equations. As will be shown herein, the solution accuracy obtained with the AEM using 
one or a few elements can be reached by the DM only if a large number of elements is used.  

Two important concepts introduced by the AEM will be presented in the next section: the complete 
transfer relation (CTR) and the concordant functions (CF). These two concepts will then be applied to 
calculate eigenvalues and eigenvectors for the axial vibration of trusses. The AEM results will be 



  

compared against the DM results. The section preceding the conclusions will present the computation 
of eigenvalues for the transverse vibration of straight beams.  

The Accurate Element Method 

The AEM has been developed and implemented to integrate linear and nonlinear ODEs with constant 
and variable coefficients [1]. An important aspect of the AEM is the complete transfer relation. To 
introduce the complete transfer relation, let us consider the ODE that describes the beam deflection [5], 
p. 222  
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d w p

dx EI
= .  (1) 

This equation links the fourth derivative of the displacement to the transverse distributed load p , the 
elasticity modulus E and the moment of inertia I. To accurately solve the ODE it is necessary to 
integrate it exactly four times. The ODE integration is usually done numerically, either using Runge-
Kutta or similar type methods [2], or by accepting from the beginning an approximation, such as in the 
DM where the variation of the distributed load is neglected [1]. Instead, the AEM integrates the ODE 
without any approximation, leading to one or more integral equations. For the solution of equation (1), 
the AEM generates four integral equations, each one including a term  
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where ( )f x  is a known function and 1x , 2x  are the limits of the integration domain D . The 
ensemble of the four equations previously mentioned will be referred as the complete transfer relation 
(CTR), because it transfers the information to the nodes, and because this transfer is complete, i.e., 
without any approximation. The problem is not yet solved because equation (2) cannot be integrated 
since φ (x) is unknown. In order to make the integration possible, φ (x) is usually replaced by an 
interpolation function, which is a low-degree polynomial leading therefore to approximate results. 
Instead, the AEM uses high-degree interpolation functions, called herein concordant functions. To 
eliminate part of the unknowns, the governing equation and its derivatives are used, as showed in the 
next section.  

The eigenvalues of trusses 

The governing equation 
The behavior of a truss is described by two differential equations: (1) the equilibrium equation, and (2) 
the deformation equation. The equilibrium equation is  

 ( )
dN

q x
dx

= − ,  (3) 

where ( )q x  is the distributed axial load and N is the internal axial force. The deformation equation, 
based on Bernoulli hypothesis, is  

 
du N

dx EA
= ,  (4) 

where the axial displacement is ( )u u x=  and A  is the constant transverse area of the truss. If equation 
(3) is substituted into the differentiated form of equation (4), the following second-order ODE is 
obtained  
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The eigenvalue problem results by replacing ( )q x  with an inertia load. If ρ  is the density of the 
material and ω  is the circular frequency, the inertia force dF  is given by the product between the 
mass ( dm Adxρ= ) and the acceleration ( 2uω ). As a result, 2dF u A dxω ρ=  and therefore  

 2( )q x dF dx u Aω ρ= / = .  (6) 

If ( )q x  is substituted in (5) and ( )u x  is replaced by φ (x), then 
2

2 ( ) 0d
dx

xφ β φ+ =  or  

 ( 2) (0) 0φ βφ+ = ,  (7) 

where 2( )Eβ ρ ω= /  and ( ) k

k
dk
dx
φφ = .  

The numerical examples analyzed below will calculate the eigenvalues of equation (7), with the 
following boundary conditions, corresponding to 1 0x =  and 2 1x =   

 (0)

1 1( 0) 0x xφ φ= = = =  (8) 

 

 (1)

2 2( 1) 0x xφ φ′ = = = = .  (9) 

The exact analytic solution of (7) is ( ) sin cosx A x B xφ β β= + . The boundary condition (8) 

yields 0B = . The boundary condition (9), applied to the derivative ( ) cosx A xφ β β′ = , 

gives cos ( ) 0β = . Consequently
2

(2 1) 1 2 3k kπβ = − , = , , , ...  and  

 { }2(2 1) 2 1 2 3k k kβ π= − / , = , , , ...  (10) 

 

The Complete Transfer Relation 

Let us suppose that the integration of equation (7) must be performed between 1x  and 2x , the current 
abscissa being x.  After the first integration, equation (7) becomes  

 (1) ( 0)

11
( ) 0

x

x
x dx Kφ β φ+ + = ,∫  (11) 

where 1K  is an integration constant. The integration constant 1K  can be eliminated by evaluating 

equation (11) at both ends of the integration interval. At 1x x= , it results  

 (1)

1 1K φ= −  (12) 

and at 2x x=   
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( )

x

x
K x dxφ β φ= − − .∫  (13) 

If 1K  is eliminated between equations (12) and (13), the first integral of equation (7) is obtained  
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( ) 0

x

x
x dxφ φ β φ− − = .∫  (14) 

The procedure continues with the integration of equation (11)  

 ( )(0 ) (0 )

1 21 1
( ) 0

x x

x x
d dx K x Kφ β φ ξ ξ+ + + =∫ ∫  (15) 



  

To eliminate the integration constant 2K , equation (15) is evaluated at both ends of the integration 

interval. At 1x x= , one obtains  

 ( )1(0 ) ( 0)

1 1 1 21 1
( ) 0

x x

x x
d dx K x Kφ β φ ξ ξ+ + + = ,∫ ∫  (16) 

and at 2x x=   

 ( )2(0 ) ( 0)

2 1 2 21 1
( ) 0

x x

x x
d dx K x Kφ β φ ξ ξ+ + + =∫ ∫  (17) 

The integration constant 1K  is replaced in (16) by (12) and in (17) by (13). Taking into account that 

( )1 (0)

1 1
( ) 0

x x

x x
d dxφ ξ ξ =∫ ∫ , the difference between (16) and (17) leads to  

 ( ){ }2 2(0 ) ( 0) (1) (1) (0 ) (0)

1 2 1 1 2 2 21 1 1
( ) 0

x x x

x x x
x x d dx x dxφ φ φ φ β φ ξ ξ φ− − + + − + =∫ ∫ ∫  (18) 

Using integration by parts, the terms from the parenthesis in equation (18) reduce to  

 ( )2 2 2(0 ) (0) (0 )

21 1 1 1
( )

x x x x

x x x x
d dx x dx x dxφ ξ ξ φ φ− + =∫ ∫ ∫ ∫  (19) 

Consequently, equation (7) integrated twice becomes  

 
2(0) (0) (1) (1) (0)

1 2 1 1 2 2 1
( ) 0

x

x
x x x x dxφ φ φ φ β φ− − + + = .∫  (20) 

The ensemble of the two relations (14) and (20), which is the result of transferring the two successive 
integrals of (7) to the ends of the computational domain, represents the complete transfer relations 
(CTR).  

The Concordant Functions 

The third-degree concordant function CF4 
As it was stated previously the challenge is how to replace function ( )xφ  in order to integrate it. The 
function that approximates ( )xφ  must be based on the four end unknowns which have been used in 

the in equations (14) and (20), namely (0) (0) (1)
1 2 1φ φ φ, ,  and (1)

2φ . Based on these unknowns, one obtains 
a unique description of a third-degree polynomial  

 (0) 2 3
0 1 2 3( )x C C x C x C xφ = + + +  (21) 

whose first derivative is  

 (1) (0) 2
1 2 3( ) 2 3x d dx C C x C xφ φ= / = + +  (22) 

The relation (21) will be further referred to as the CF4 concordant (or interpolation) function. Its 
coefficients can be obtained by imposing the following end conditions:  

 (0) 2 3 (0)
1 0 1 1 2 1 3 1 1( )x x C C x C x C xφ φ= = + + + =  (23) 

 

 (0) 2 3 (0)
2 0 1 2 2 2 3 2 2( )x x C C x C x C xφ φ= = + + + =  (24) 

 

 (1) 2 (1)
1 1 2 1 3 1 1( ) 2 3x x C C x C xφ φ= = + + =  (25) 



  

 

 (1) 2 (1)
2 1 2 2 3 2 2( ) 2 3x x C C x C xφ φ= = + + =  (26) 

These four conditions yield the system of equations  
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=  

or using the notation  

 [ ]4 4 4
CA φ   =     (27) 

where 4[ ]A  is the square matrix and  

 0 1 2 34

TC C C C C 
    =   (28) 

 

 (0) (0) (1) (1)
1 2 1 24

T
φ φ φ φ φ 

  
  = .   (29) 

The vector of coefficients 4[ ]C  can be obtained using the inverse of the matrix 4[ ]A   

 [ ] 1

44 4
C A φ−   = .     (30) 

The integrals remaining in equations (14) and (20) can now be evaluated by using equation (21)  

 ( ) ( )
2 2 3 3 4 42 2

(0 ) 2 3 2 1 2 1 2 1
0 1 2 3 2 1 0 1 2 3

1 1

4
2 3 4

x x

x x

x x x x x x
Int dx C C x C x C x dx x x C C C Cφ φ

− − −
= = + + + = − + + +∫ ∫  
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1 1

4
2 3 4 5

x x

x x

x x x x x x x x
Int x x dx C x C x C x C x dx C C C Cφ φ

− − − −
= = + + + = + + +∫ ∫

 

If one denotes  

 [ ]
3 3 4 42 2
2 1 2 12 1

2 14 3 42

x x x xx xInt x x
− −−

= −
 
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 (31) 
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2 2 3 3 4 4 5 5

2 1 2 1 2 1 2 1

4 2 3 4 5

x x x x x x x x
Int x

− − − −
=
 
  

 (32) 

then  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 (0 ) (0) (1) (1)

1 1 2 2 3 1 4 24 4 4 4 4 4 4
4Int Int C Int A P P P P Pφ φ φ φ φ φ φ−
= = = = + + +  (33) 

 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 (0 ) (0 ) (1) (1)

1 1 2 2 3 1 4 24 4 4 4 4 4 4
4Int x Intx C Intx A Q Q Q Q Qφ φ φ φ φ φ φ−
= = = = + + +  (34) 



  

where 
4

P    and 
4

Q    are two matrices with four terms, which can be computed for each pair of 

abscissas 1x  and 2x . If 1x =0 and 1x =1, the terms of 
4

P    and 
4

Q    are those given in the CF4 

rows of the Tables 1 and 2, respectively.  

It is now possible to obtain a final form the CTR by replacing (33) and (34) in both equations (14) and 
(20)  

 ( )(1) (1) (0) (0) (1) (1)

1 2 1 1 2 2 3 1 4 2 0P P P Pφ φ β φ φ φ φ− − + + + =  (35) 

 

 ( )(0 ) (0 ) (1) (1) (0) (0) (1) (1)

1 2 1 1 2 2 1 1 2 2 3 1 4 2 0x x Q Q Q Qφ φ φ φ β φ φ φ φ− + + − − + + + =  (36) 

 

Table 1. The coefficients iP  used in equation (35) for different CFs 

Coefficients P  

P1 P2 P3 P4 P5 P6 P7 P8 

CF4 1/2 1/2 1/12 -1/12 0 0 0 0 

CF6 1/2 1/2 1/10 -1/10 1/120 1/120 0 0 

CF8 1/2 1/2 3/28 -3/28 1/84 1/84 1/1680 -1/1680 

 

Table 2. The coefficients iQ  used in equation (36) for different CFs 

Coefficients Q  

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

CF4 3/20 7/20 1/30 -1/20 0 0 0 0 

CF6 1/7 5/14 4/105 -13/120 1/280 1/210 0 0 

CF8 5/36 13/36 5/126 -17/252 5/1008 1/144 1/3780 -1/3024 

 

The CTR includes two equations, (35) and (36), which have four unknowns. The problem can be 
solved, however, because the boundary conditions (8) and (9) are also available. The four equations 
thus obtained form a homogeneous system that can be written as  
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+ =
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     
     
     
     

 (37) 

In the system of equations (37), the first row is equation (35), the second row is equation (36), the third 
row is equation (8) and the last row is equation (9). The system of equations can be written in compact 
form as  

 [ ] [ ]0 1 4
0A Aβ φ   

   + = .
 
  

 (38) 

Equation 38 represents a classical eigenvalue problem. The eigenvalues corresponding to the CF4 
interpolation functions, obtained by solving equation (37), are shown in Table 3. Table 3 also shows 
the exact solution (10) and the relative errors  



  

 4( )CF exact exacterror eigenvalue eigenvalue eigenvalue= − /  (39) 

computed with respect to the exact solution (10).  

Table 3. The exact and the AEM solutions based on low-degree polynomials 

 Errors (referred to the exact analytic solution) 

NE IF2 CF4 

⇓ ω1 ω2 ω3 ω1 ω2 ω3 

1 * * * 1 E-1 * * 

2 1 E-1 * *  3.7 E-2 1 E-1 2 E-1 

3 4.6 E-2 1.6E-1 *  7.9 E-4    1 E-2 1 E-1 

4 2.6 E-2 1 E-1 1.9 E-1 2.6 E-4 3.7 E-3 1.6 E-2 

5 1.6 E-2 6 E-2 1.4 E-1 1 E-4 1.6 E-3 7.4 E-3 

10 4 E-3 1.6 E-2 3.7 E-2 6.7 E-6 1.1 E-4 5.2 E-4 

20 1 E-3 4 E-3 9 E-3 4.2 E-7 6.7 E-6 3.4 E-5 

30 4.6 E-4 1.8 E-3 4.1 E-3 8.3 E-8 1.3 E-6 6.7 E-6 

40 2.6 E-4 1 E-3 2.3 E-3 * * * 

50 1.6 E-4 6.6 E-4 1.5 E-3 * * * 

 

Note that equation (21) represents a Hermite type polynomial. The methodology presented above will 
be used in the next sections to obtain higher-degree CFs. The relative error (39) allows to evaluate how 
many digits of the computed result coincide with exact solution. The result for CF8 corresponding to 
the first eigenfrequency has an error of 1.4 E-6. The exponent of the error, 6 in this case, indicates a 
coincidence of 6 digits. This is not always true, but a coincidence of 6 1± digits is to be expected for 
the CF8 interpolation function.  

The fifth-degree concordant function CF6 
Let us suppose that the Concordant Function is a fifth-degree polynomial  

 (0) 2 3 4 5

0 1 2 3 4 5( )x C C x C x C x C x C xφ = + + + + +  (40) 

where 0 1 2 3 4C C C C C, , , ,  and 5C  are six unknown constants. These six constants will be obtained by 
using six conditions. Four of these conditions are identical to equations (25-28) presented in the 
previous section. The other two necessary conditions will be obtained by using the second derivative 

(2)φ  at the ends of the domain:  

 ( 2) ( 2)

1 1( )x xφ φ= =  (41) 

 

 ( 2) ( 2 )

2 2( )x xφ φ= =  (42) 

Based on these six conditions a system of equations similar to (27) can be written  

 [ ] [ ] [ ]
6 6 6

A C φ= ,  (43) 

where 6[ ]A  is a six-by-six square matrix and  

 [ ] 0 31 2 4 56

TC C C C C CC  
 =  



  

 

 [ ] (0 ) (1)( 0) (1) ( 2 ) ( 2)
1 22 1 1 26

T
φ φ φ φ φ φ φ 

  = .  (44) 

The vector of coefficients 
6

C    can be obtained using the inverse of the [ ]6
A  matrix  

 [ ] [ ] [ ]1

6 6 6
C A φ−

= .  (45) 

The integrals of equations (14) and (20) will be denoted as Intφ 6 and Int xφ 6. These integrals can be 
evaluated similarly to the integrals Intφ 4 and Int xφ 4, if equation (40) is used instead of equation 
(21). If one denotes  

 [ ]
2 2 3 3 4 4 5 5 6 6

2 1 2 1 2 1 2 1 2 1
2 16 2 3 4 5 6

x x x x x x x x x x
Int x x

− − − − −
= −
 
  

 

 

 [ ]
2 2 3 3 4 4 5 5 6 6 7 7

2 1 2 1 2 1 2 1 2 1 2 1

6 2 3 4 5 6 7

x x x x x x x x x x x x
Int x

− − − − − −
=
 
  

 

then  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 ( 0) (0 ) (1) (1) ( 2 ) ( 2 )

1 1 2 2 3 1 4 2 5 1 6 26 6 6 6 6 6 6
6Int Int C Int A P P P P P P Pφ φ φ φ φ φ φ φ φ−
= = = = + + + + +

 (46) 

 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 (0 ) (0 ) (1) (1) ( 2 ) ( 2)

1 1 2 2 3 1 4 2 5 1 6 26 6 6 6 6 4 4
6Intx Intx C Intx A Q Q Q Q Q Q Qφ φ φ φ φ φ φ φ φ−
= = = = + + + + +

 (47) 

where 
6

P    and 
6

Q    are one-row matrices with six terms, which can be computed for each pair of 

abscissas 1x  and 2x . If, for instance, 1x =0 and 2x =1, the terms of 
6

P    and 
6

Q    are those given 

in the CF6 rows of the Tables 1 and 2, respectively.  

It is now possible to obtain the final form of the CTR by replacing equations (46) and (47) in equations 
(14) and (20)  

 ( )(1) (1) ( 0) (0 ) (1) (1) ( 2) ( 2)

1 2 1 1 2 2 3 1 4 2 5 1 6 2 0P P P P P Pφ φ β φ φ φ φ φ φ− − + + + + + =  (48) 

 ( )( 0) (0 ) (1) (1) ( 0) (0) (1) (1) ( 2) ( 2 )

1 2 1 1 2 2 1 1 2 2 3 1 4 2 5 1 6 2 0x x Q Q Q Q Q Qφ φ φ φ β φ φ φ φ φ φ− + + − − + + + + + =  

 

A new problem arises now, whose solution is the essence of the accurate element method presented 
herein. The conditions of the problem have not changed, therefore only four equations are available, 
while there are six unknowns involved, corresponding to (44). The unknowns (0) (0) (1)

1 2 1φ φ φ, ,  and (1)
2φ  

were used to determine the CF4 interpolation function. We will consider these unknowns to be the 
basic unknowns, while the unknowns (2)

1φ  and (2)
2φ  will be considered the apparent unknowns, and 

they will be eliminated.  

To eliminate the apparent unknowns (2)
1φ and (2)

2φ  additional information is needed. Such information 
is usually obtained from some relations with adjacent elements or by accepting a reasonable 
approximation. Neither of these options is used by the AEM. Instead, the necessary information is 
obtained from the governing equations. The second derivative is obtained from the governing equation 
(7), that is  



  

 (2) (0)φ β φ= − .  (49) 

As a result, the second derivatives at the ends of the integration domain are given by two exact 
additional relations  

 ( 2) (0)

1 1φ βφ= −  (50) 

 

 ( 2) (0)

2 2φ βφ= −  (51) 

If the derivatives (2) (2)
1 2φ φ,  are replaced in equation (48) it results  
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− + + − − + + + + + =



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 (52) 

Equations (50), (51) and (52) can be written in matrix form as  

 
(0) (0)

1 5 82 3 4 6 71 1

(0 ) (0)
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1 1 ( ) ( )

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
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   
   
   
   
   
   
   
   
   
         

− − − − −

− − − − − −
+ +

   
   
   
   
   
   

(0 )

1

(0 )
2

(1)
1

(1)
2

0

0

0

0 0 0

φ

φ

φ

φ

 
 
 
 
 
 
 
 
 
   

= .

   
   
   
   
   
   

 (53) 

Note that equation (53) is identical to equation (37) except for the additional term that includes 2β . 

For the interpolation functions CF6, the terms 7 8 7P P Q, ,  and 8Q  are null. The system of equations 
(53) can be written in compact form as  

 [ ] [ ]2

0 1 2 4
0A A Aβ β φ      

       + + = .  (54) 

The equation (54) represents a polynomial eigenvalue problem. The eigenvalues β  were obtained 
herein using the routine POLYEIG of MATLAB. This function solves the polynomial eigenvalue 
problem of degree p . If either one but not both [A 0 ] and [A p ] are singular, the problem is well 
posed, but some of the eigenvalues may be zero or infinite. From equation (54) three eigenvalues 
result, which are given in the CF6 row of Table 3, together with the relative errors. Note that the first 
four digits of the first eigenvalue are exact although only one AEM element with CF6 interpolation 
functions has been used.  

The seventh-degree concordant function CF8 
As shown in the previous section, the results improve if the degree of the CF increases. The 
methodology presented for the elimination of the apparent unknowns can be applied for any higher-
degree CF. For instance if a CF8 with eight terms is considered  

 (0) 2 3 4 5 5 7

0 1 2 3 4 5 6 7( )x C C x C x C x C x C x C x C xφ = + + + + + + +  (55) 

two additional conditions compared to the CF6 case are necessary to obtain all the constants. These 
additional conditions will be based on the third derivative, (3)φ , at ends of the domain  

 (3) (3)

1 1( )x xφ φ= =  (56) 

 

 (3) (3)

2 2( )x xφ φ= = .  (57) 



  

A system of equations similar to (27) can be written using the eight available conditions (25-28), (41), 
(42), (56) and (57)  

 [ ] [ ] [ ]
8 8 8

A C φ= ,  (58) 

where 8[ ]A  is an eight-by-eight square matrix and  

 [ ] 0 3 51 2 4 6 78

TC C C C C C C CC  
 =  (59) 

 

 [ ] (0 ) (1) ( 2 )( 0) (1) ( 2 ) (3) (3)
1 2 22 1 1 1 28

T
φ φ φ φ φ φ φ φ φ 

  = .  (60) 

The vector of coefficients 
8

C    can be obtained using the inverse of the [ ]8A   

 [ ] [ ] [ ]1

8 8 8
C A φ−

= .  (61) 

The integrals of equations (14) and (20) will be denoted as Intφ 8 and Intxφ 8. These integrals can be 
evaluated in the same manner as the integrals Intφ 6 and Int xφ 6, if equation (55) is used instead of 
equation (40). Following the same procedure as in the previous section yields  

 (0) (0 ) (1) (1) ( 2) ( 2 ) (3) (3)

1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 28Int P P P P P P P Pφ φ φ φ φ φ φ φ φ= + + + + + + +  (62) 

 

 ( 0) (0 ) (1) (1) ( 2 ) ( 2 ) (3) (3)

1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 28Intx Q Q Q Q Q Q Q Qφ φ φ φ φ φ φ φ φ= + + + + + + + ,  (63) 

where the eight terms iP , iQ , are given for 1x =0 and 2x =1 in the CF8 rows of the Tables 1 and 2.  

The final form of the CTR results by replacing (62) and (63) in equations (14) and (20)  

 ( )(1) (1) (0) ( 0) (1) (1) ( 2) ( 2) (3) (3)

1 2 1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2 0P P P P P P P Pφ φ β φ φ φ φ φ φ φ φ− − + + + + + + + =  (64) 

 

 ( )( 0) (0 ) (1) (1) (0 ) ( 0) (1) (1) ( 2 ) ( 2) (3) (3)

1 2 1 1 2 2 1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2 0x x Q Q Q Q Q Q Q Qφ φ φ φ β φ φ φ φ φ φ φ φ− + + − − + + + + + + + =

 (65) 

Because the basic unknowns remain (0) (0) (1)
1 2 1φ φ φ, ,  and (1)

2φ , the number of apparent unknowns is 

now four, namely (2) (2) (3)
1 2 1φ φ φ, ,  and (3)

1φ . The apparent unknowns must be eliminated using the 
governing equation. Besides the two relations (50) and (51) established previously, two more relations 
can be obtained by differentiating equation (49)  

 (3) (1)φ β φ= − .  (66) 

As a result, two exact additional relations specify the third derivatives at the ends of the integration 
domain  

 (3) (1)
1 1φ βφ= −  (67) 

 

 (3) (1)
2 2φ βφ= − .  (68) 

If equations (50), (51), (67) and (68) are replaced in equation (64), this yields  



  

 

( ) ( )
( ) ( )

(1) (1) ( 0) (0 ) (1) (1) 2 (0 ) (0 ) (1) ( 2)

1 2 1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2

(0) (0 ) (1) (1) (0 ) (0 ) (1) (1) 2 ( 0) ( 0) (1) ( 2)

1 2 1 1 2 2 1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2

0

0

P P P P P P P P

x x Q Q Q Q Q Q Q Q

φ φ β φ φ φ φ β φ φ φ φ

φ φ φ φ β φ φ φ φ β φ φ φ φ

− − + + + + + + + =

− + + − − + + + + + + + = .




 

The final system of equations in matrix form is given by equation (53). Consequently, equations (54) 
remain the same, leading to the four eigenvalues that are given in the CF8 row of Table 3. Note that the 
first six digits of the first eigenvalue are exact although only one AEM element with CF8 interpolation 
functions has been used.  

A numerical comparison between the DM and the AEM 
The DM solution is based on the two-by-two stiffness matrix [ ]K , leading to the well-known relation 
[4], p. 11  

 [ ] [ ][ ]F K δ= ,  (69) 

where [ ] 1 2

T

x x
F FF  
 = is the nodal forces vector and [ ] 1 2

Tu uδ  
 =  is the nodal axial 

displacements vector. Because δ    is based on only two end unknowns, the interpolation function 

used to replace ( ) ( )u x xφ=  has only a linear variation given by  

 ( ) ( )1 2 1 1 2 1( )u x u u u L Lφ φ φ= + − / = + − /  (70) 

where 2 1L x x= − . The interpolation function (70) is referred herein as IF2. By using IF2, the CTR 
becomes [1], p. 78  

 
(0) (0 ) (1) 2 ( 0) 2 ( 0)

1 2 1 1 2

( 0) (0 ) (1) 2 (0 ) 2 ( 0)

1 2 2 1 2

( 3 6)

( 6 3)

L L L

L L L

φ φ φ β φ φ

φ φ φ β φ φ

− + = / + /

− + − = / + /





 (71) 

By applying the boundary conditions (8) and (9) and taking into account that 2 1 1L x x= − = , the 

second equation (71) yields 2 3IFβ = .   

The relative error with respect to the analytical value of the eigenvalue is  

 2 2
( ) 0 216IF IF exact exacteigenvalue eigenvalue eigenvalueerror = − / = . .  

Note that this error is at least two-to-three orders of magnitude larger than the AEM errors shown in 
Table 3 for the first eigenvalues.  

The rest of this section presents a comparison between the eigenvalues obtained using the IF2 and CF 
interpolation functions. The comparison will be done for a truss with constant area, using a different 
number of elements, NE. The truss is clamped at both ends such as the boundary conditions are  

 (0 )

1 1 1( 0) 0x x uφ φ= = = = =  (72) 

 

 (0 )

2 2 2( ) 0x x uφ π φ= = = = = .  (73) 

The length of the truss is L π= . If 1Eρ/ = , the governing equation (7) can be written as  

 
2

2

2
( ) 0

d
x

dx

φ
ω φ+ = .  (74) 

The exact eigenfrequencies of equation (74) with the boundary conditions (72) and (73) are given by 

1ω =1, 2ω =2, 3ω =3, 1ω =4,…, kω =k.  



  

 

 

 

Table 4. Errors for the IF2 and CF4 interpolation functions 

 Errors (referred to the exact analytic solution) 

NE IF2 CF4 

⇓ ω1 ω2 ω3 ω1 ω2 ω3 

1 * * * 1 E-1 * * 

2 1 E-1 * *  3.7 E-2 1 E-1 2 E-1 

3 4.6 E-2 1.6E-1 *  7.9 E-4    1 E-2 1 E-1 

4 2.6 E-2 1 E-1 1.9 E-1 2.6 E-4 3.7 E-3 1.6 E-2 

5 1.6 E-2 6 E-2 1.4 E-1 1 E-4 1.6 E-3 7.4 E-3 

10 4 E-3 1.6 E-2 3.7 E-2 6.7 E-6 1.1 E-4 5.2 E-4 

20 1 E-3 4 E-3 9 E-3 4.2 E-7 6.7 E-6 3.4 E-5 

30 4.6 E-4 1.8 E-3 4.1 E-3 8.3 E-8 1.3 E-6 6.7 E-6 

40 2.6 E-4 1 E-3 2.3 E-3 * * * 

50 1.6 E-4 6.6 E-4 1.5 E-3 * * * 

 

As shown in Table 4, the results obtained using the IF2 interpolation function could be considered 
rather poor. Even the results obtained using 50 elements with the IF2 interpolation function are quite 
far from the exact analytic solution. The eigenvalues were obtained by using a program written by the 
authors and by using ANSYS, the results being the same. Note that commercial codes are not able to 
use a higher-degree interpolation function, because they are based on a stiffness matrix that allows only 
the use of low-degree interpolation functions.  

Table 5. Errors for the CF8, CF12 and CF16 interpolation functions 

 Errors (referred to the exact analytic solution) 

ω CF8 CF12 CF16 

⇓ NE=1 NE=2 NE=3 NE=1 NE=2 NE=3 NE=1 NE=2 NE=3 

ω1 2.8 E-4 6.8 E-7 2.8 E-8 1.3 E-8 1.9 E-11 1.4 E-13 1.7 E-11 2 E-16 8 E-16 

ω2 4 E-3 2.8 E-4 6.5 E-6 1.7 E-7 1.3 E-7 5.7 E-10 2.3 E-8 1.7 E-11 1.3 E-14 

ω3 * 2.6 E-3  2.8 E-4 1 E-2 6.9 E-6 1.3 E-7 2.1 E-4 4.7 E-9 1.7 E-11 

ω4 * 3.6 E-3 1 E-3 3.1 E-2 1.7 E-5 1.8 E-6 1.1 E-3 2.3 E-8 7.6 E-10 

ω5 * 6 E-2 5 E-3 * 1.4 E-3 2.2 E-5 5.7 E-2 9.3 E-6 2.3 E-8 

ω6 * * 3 E-3 * 1 E-2 1.7 E-5 9.1 E-2 2.1 E-4 2.3 E-7 

ω7 * * 4 E-2 * 2.6 E-2 7.4 E-4 * 8 E-4 3.5 E-6 

ω8 * * 8 E-2 * 3 E-2 2.6 E-3 * 1.1 E-3 2.3 E-5 

ω9 * * * * * 1.3 E-2 * 1.3 E-2 2.1 E-4 

ω10 * * * * * 1.8 E-2 * 5.7 E-2 4.4 E-4 

 



  

Table 5 shows the variation of the eigenvalue errors for interpolation functions CF8, CF12 and CF16. 
The number of elements was less or equal to three. The first ten eigenvalues, if available, were listed in 
the table. The eigenvalues were calculated using the routine POLYEIG of MATLAB.  

Recall that the CF4 interpolation function did not require the elimination of any apparent unknowns, 
therefore the only difference between IF2 and CF4 is the use of a different number of unknowns per 
element. The result obtained for 1ω  using CF4 with three elements, that is twelve unknowns, is similar 
to that obtained using IF2 with thirty elements, that is sixty unknowns. Consequently, for the same 
accuracy, the computational time of the AEM using the CF4 interpolation function is smaller than that 
of the FEM using the IF2 interpolation function. One can also compare the errors between the CF8, 
CF12 and CF16 interpolation functions with the same number of elements. Let us consider the results 
corresponding to the first eigenvalue for three elements. In this case, the number of unknowns after 
eliminating the apparent unknowns was twelve, the same for the CF8, CF12 and CF16 interpolation 
functions. The ratios between the errors corresponding to the CF and the IF2 interpolation functions, 
shown in Table 6, indicate the net advantage of the AEM with high-degree interpolation functions.  

Table 6. Errors for the CF8, CF12 and CF16 interpolation functions 

ErrorIF2/ErrorCF8 ErrorIF2/ErrorCF12 ErrorIF2/ErrorCF16 

1.6E4 3.3E9 5.7E11 

 

The eigenvectors 
This section briefly describes how to calculate the eigenvectors once the eigenvalues have been 
computed. First, the eigenvalue β  is substituted in either equation (37) or (53). Because equations (37) 
and (53) are homogeneous systems, the first CTR equation must be replaced by an equation that gives 
an arbitrary nonzero value to one of the basic end unknowns (obviously not to those involved in the 
boundary conditions). The solution of this system of equations provides the end unknowns, ( )

1
kφ  and 

( )
2

kφ . The apparent unknowns can be calculated using equations (50) and (51) for CF6 or equations 

(50), (51), (67) and (68) for CF8. The vector of coefficients C    results from equations (45) or (61) 

and the eigenvector is obtained from (40) or (55).  

If the solution obtained with the CF8 interpolation function is considered, and (0)
2 1φ =  is imposed 

arbitrarily, the eigenvector corresponding to the first eigenvalue is given by  
3 42

5 6 7

( ) 0 1 570795735759208 0 64596473657853 0 000566943236556480
0 08185097791941587 0 00291659 4370312 0 0031984394932305

x x x xx
x x x

φ = + . + − . − . +∗
+ . − . − . .

  

The value of the eigenvector at 0 5x = .  is given by ( 0 5) 0 7071041xφ = . = . , while the value 
corresponding to the exact solution (73) is 0.7071067. The first five digits of the AEM eigenvector 
coincide to the exact solution, although only one element was used.  

Methods for improving the accuracy of the AEM 
The results obtained using one element with the CF8 interpolation function have satisfactory accuracy. 
It is useful, however, to examine ways of improving them. Two options will be discussed herein: (1) 
increasing the degree of the interpolation polynomial, and (2) increasing the number of elements.  

Increasing the degree of the polynomial, that is, increasing the number of terms of in the CF 
interpolation function can be done without special difficulties by following the procedure already 
described. This requires higher derivatives of the governing equation (7) in order to eliminate the new 
apparent unknowns. This strategy has already been used for CF16 (fifteenth-degree polynomial) and 
CF20 (nineteenth-degree polynomial) [1], pp. 80-81. For the case of CF20, the error corresponding to 



  

the first eigenvalue obtained with one element dropped to 8.88 x 10 16− , that is, the first 15 digits 
coincide with the exact result.  

Increasing the number of elements can be done together or independently of varying the degree of the 
interpolation function. Let us suppose the domain of integration is divided in two elements noted 1 2−  
and 3 4− , respectively. The lengths of these elements can be equal or not. The number of nodal 
unknowns is double the number of unknowns per element, that is, two times four. The unknowns of the 
element 1-2 are (0) (0) (1)

1 2 1φ φ φ, ,  and (1)
2φ , and the unknowns of the element 3-4 are (0) (0) (1)

3 4 3φ φ φ, ,  and 
(1)
4φ . To solve the problem, eight equations are necessary. These equations can be divided in three 

groups: (1) equations based on the CTR, (2) equations based on the connective relations between the 
elements, and (3) boundary conditions. The equations based on the CTR will rely on the equations (14) 
and (20) and will generate four equations. The equations based on the connective relations will impose 
the continuity of the function and its first derivative at the adjacent nodes  

 (0) (0)
2 3φ φ=  

 

 (1) (1)
2 3φ φ=  

 

In addition, two boundary conditions, such as the relations (8) and (9) can be imposed at the 
ends of the integration domain. Consequently, a total of eight equations will be available from the 
CTR, connective relations and boundary conditions, such that the constants of the interpolation 
function CF8 can be determined.  

The eigenvalues of straight beams 

The governing equation 
The deformation analysis of a straight beam, written in the x z−  coordinate system, is based on 
relation (1). Following the procedure used in section 1, ( )p x  is given by the inertia load (6), where u  
will be replaced by w :  

 2( )p x w Aω ρ= .  (75) 

Substituting ( )p x  from equation (75) into (1) yields [5], p. 224  

 (4) (0) 0w wβ− = ,  (76) 

where  

 2

z

A
EI
ρβ ω= .  (77) 

Let us replace the displacement w  by φ , such that the fourth-order ODE (76) becomes  

 (4) (0) 0φ β φ− =  (78) 

 

The Complete Transfer Relation 
The ODE (78) must be integrated four times. These successive integrations lead to the following four 
equations that represent the CTR  
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∫

 (79) 

 

The Concordant Functions 

The seventh-degree concordant function CF8 
Because equation (78) has been integrated four times, the CTR (79) is based on eight end unknowns 

(3) (3)
1 2φ φ, , (2) (2)

1 2φ φ, , (1) (1)
1 2φ φ,  , (0)

1φ  and (0)
2φ . These eight unknowns are the basic unknowns. In 

this case the basic concordant function will be a CF8 interpolation function given by equation (55) for 
which there are no apparent unknowns. Consequently, the relations (55), (62), (63), can be used 
directly without any elimination procedure.  

For a fourth-order ODE, the major modification compared to second-order ODEs is that two additional 
integrals must be considered in addition to equations (62) and (63). These additional integrals result 
from the third and fourth equations of (79)  

 
2

2 2 (0) (0 ) ( 0) (1) (1) ( 2 ) ( 2) (3) (3)

1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2

1

8
x

x

Intx x dx R R R R R R R Rφ φ φ φ φ φ φ φ φ φ= = + + + + + + +∫  (80) 

 

 
2

3 3 (0 ) ( 0) ( 0) (1) (1) ( 2) ( 2) (3) (3)

1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2

1

8
x

x

Intx x dx S S S S S S S Sφ φ φ φ φ φ φ φ φ φ= = + + + + + + + .∫  (81) 

Following a procedure similar to that presented in section 3, a homogeneous system of equations 
similar to equation (27) results  

 [ ] [ ]0 1 8
0A Aβ φ   

   + = .
 
  

 (82) 

Note that in this case [ 0A ] and [ 1A ] are eight-by-eight matrices and 
8

φ    is an eight-component 

vector given by relation (60). Four equations of the system of equations (82) are provided by the CTR 
(79). The other four necessary equations are represented by the boundary conditions. If the beam is 
simply supported, then both ends displacements and bending moments are zero. By taking into account 
the equation (2) (2)( )w M x EI φ= − / =  the boundary conditions are  

 (0) ( 0) (0 ) (0) ( 2) ( 2 ) ( 2) ( 2 )

1 1 2 2 1 1 2 20 0 0 0w w w wφ φ φ φ= = ; = = ; = = ; = = .  (83) 

 

The fifteenth-degree concordant function CF16 
As shown in section 3, if a concordant function with more terms than those corresponding to the basic 
unknowns is used, the result is a polynomial eigenvalue problem described by (54). Recall that for the 



  

second-order ODE (7), the coefficients of the CF4 interpolation function were calculated using only 
basic unknowns, without apparent unknowns. In this case, the relation (54) was the same for the CF6 
and CF8 interpolation functions. This had a favorable influence on the accuracy of the results. For the 
fourth-order ODE (78) the coefficients of the CF8 interpolation function can be calculated using only 
basic unknowns, without apparent unknowns. In this case, equation (54) is the same whether the CF10, 
CF12, CF14 or CF16 interpolation functions are used. To achieve higher accuracy it is recommended 
therefore to use the CF16 interpolation function, which is a fifteenth-degree polynomial. Using the 
same procedure presented in section 3, the integral (62) will now depend on 16 terms  
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= = + + + + + + +

+ + + + + + + + + .

∫  (84) 

In this case, eight apparent unknowns must be eliminated. This can be done using the governing 
equation (78) and its first three derivatives  
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By applying them to both ends, the following eight relations result  

 

( 4 ) ( 0)

1 1

( 4 ) ( 0)

2 2

(5) (1)

1 1

(5) (1)

2 2

(6 ) ( 2)

1 1

(6 ) ( 2)

2 2

( 7 ) (3)

1 1

(7 ) (3)

2 2

0

0

0

0

0

0

0

0

φ β φ

φ β φ

φ β φ

φ β φ

φ β φ

φ β φ

φ β φ

φ β φ

− =

− =

− =

− =

− =

− =

− =

− = .

 (86) 

Replaced in equation (84), these relations lead to  

 
2

( 0) (0 ) (0 ) (1) (1) ( 2) ( 2) (3) (3)

1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2

1

16 ( )
x

x

Int dx P P P P P P P Pβ φ β φ β φ φ φ φ φ φ φ φ= = + + + + + + + +∫  

2 ( 0) (0) (1) (1) ( 2) ( 2) (3) (3)

9 1 10 2 11 1 12 2 13 1 14 2 15 1 16 2( )

(87)
P P P P P P P Pβ φ φ φ φ φ φ φ φ+ + + + + + + + .

 

A similar procedure applied to Q i iR,  and iS , ( i =1, 2, … ,16) will lead to equation (54).  

A numerical comparison between the DM and the AEM  
The DM is based on equation (69), where for the straight beam  

 [ ] (0) (0 )(0 ) (1) (1) ( 0) (1) (1)
1 12 1 2 2 1 2

T T
w w w wδ φ φ φ φ   
      = = .  (88) 

Because only four end unknowns are involved, the DM can only use a third-degree polynomial 
(Hermite type) to obtain the eigenvalues. This limitation leads to quite poor results, compared to using 
the CF8 and especially CF16 interpolation functions. The third-degree polynomial will be denoted IF4.  

The eigenvalues of a simply supported beam with constant cross-area are given by the exact solution 
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If 1A = , 1I = , ρ /E=1 and L π= , the eigenvalues are given by 1 21ω ω= , =2 2 , 3ω =3 2 , 

4ω =4 2 , ... , nω = n 2 .  

The results obtained by using the DM with the IF4 interpolation function are shown in Table 6. The 
relative errors were calculated according to (39). As known by the users of structural analysis 
programs, even for the simple case analyzed herein, the beam must be divided in a large number of 
elements in order to generate accurate results, especially if higher eigenvalues must be computed.  

Table 7. Results obtained with IF4 (Hermite interpolation function) 

Elements Relative errors  

NE = ω1 ω2 ω3 

1 No solution No solution No solution 

2 -7.3 E-3 No solution No solution 

3 -1.1 E-3 -3.3 E-2 No solution 

4 -3.1 E-4 -7.3 E-3 -6.3 E-2 

5 -1.2 E-4 -2.5 E-3 -1.9 E-2 

6 -5.6 E-5 -1.1 E-3 -7.3 E-3 

8 -1.9 E-5 -3.0 E-4 -1.8 E-3 

10 -5.9 E-6 -1.2 E-4 -6.7 E-4 

20 -4.3 E-7 -6.9 E-6 -3.6 E-5 

24 -2.0 E-7 -3.3 E-6 -1.7 E-5 

 

The results obtained by using the CF8 and CF16 interpolation functions are shown in Table 8 [1], pp. 
113-118. The number of eigenfrequencies was increased up to 5ω , though the analysis was based only 
on one, two and three elements. The comparison of the results shown in Tables 7 and 8 illustrates that 
the accuracy of the AEM results is much better than that of the DM results. Let us underline few 
aspects.  

The result obtained for 1ω  using IF4 with twenty elements (20 x 4 = 80 unknowns) is similar to that 
obtained using CF8 with two elements (2 x 8 = 16 unknowns). If compared to CF16 with two elements, 
which has also 16 unknowns, the ratio between the relative errors is  
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If the same number of unknowns is considered, namely 16, then  
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Note also that the error 4.9 E-10 obtained for 1ω using three elements with CF16 corresponds to 

1ω =1.00000000049. The analytical solution is 1exactω =1, such that the AEM result has ten exact 
digits.  

 



  

Table 8. Relative errors for the first five eigenfrequencies obtained with CF8 and CF16 

NE = 1 element NE = 2 elements NE = 3 elements ω 

CF8 CF16 CF8 CF16 CF8 CF16 

ω1 3 E-4 3.4 E-8 6.9 E-7 2.4 E-9 2.8 E-8 4.9 E-10 

ω2 5.2 E-3 -9.7 E-7 3 E-4 3.4 E-8 6.7 E-6 7 E-9 

ω3 5.8 E-1 2.4 E-4 3 E-3 -5.6 E-8 3 E-4 3.4 E-8 

ω4 7.5 E-1 1.3 E-3 4.2 E-3 -9.7 E-7 1.3 E-3 6.3 E-8 

ω5 No solution 8.2 E-2 8 E-2 7.2 E-6 6.1 E-3 -1.8 E-7 

 

Conclusions 
The AEM, a new method for the integration of ordinary differential equations, has been developed and 
implemented to integrate linear and nonlinear ODEs with constant and variable coefficients [1, 3]. The 
AEM has been applied herein to compute accurately and efficiently the axial vibration of trusses and 
the transverse vibration of straight beams. The AEM can model two- and three-dimensional systems of 
beams and trusses with constant and variable cross section, as well as beam deformation due to shear 
forces [1]. The results presented herein were limited to two-dimensional trusses and straight beams.  

The truss element solved a second-order ODE, for which four basic unknowns must be used. The basic 
concordant function CF4 was therefore a four-term, third-degree polynomial. The straight-beam 
element solved a fourth-order ODE, for which eight basic unknowns must be used. The basic 
concordant (or interpolation) function CF8 is an eight-term, seventh-degree polynomial.  

As shown herein, the concordant functions have an essential role in the accurate element method, 
because they allow the use of high-degree polynomials without increasing the number of the end 
unknowns. An important step in obtaining the concordant functions is the calculation of the inverse 
matrix 1[ ]A − . This step may become time consuming, especially for the very high-degree concordant 
functions. The methodology presented here is a simplified version intended to facilitate understanding 
the AEM. The methodology implemented in the code, however, uses concordant functions written for a 
natural (non-dimensional) coordinate system. In this last case the inverse matrix 1[ ]A −  is always the 

same, being calculated only once. The inverse matrices 1[ ]A −  are given several concordant functions in 
[1]. 

This paper was focused on the solution of beam and trusses free vibration. The AEM allowed us to 
obtain a large number of high frequencies using a small number of elements, thereby reducing the 
computational time. The results obtained using the AEM were compared against finite element results 
obtained using ANSYS. For both trusses and beams, the accuracy of the eigenvalues computed using 
the AEM was several orders of magnitude higher than that of the finite element analysis, while the 
computational time was approximately the same.  

Because the strategies of AEM and DM are similar, the AEM elements can be included without special 
problems in a structural analysis program, such as ANSYS. The use of high-degree concordant 
functions can be handled by a subprogram that will automatically eliminate the apparent unknowns, 
returning to the main program the Complete Transfer Relation including only the small number of the 
basic unknowns.  
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