ANSYS Sherlock—Reliability Physics in Your Design Process

/ Standard Hardware Design Process

1. Hardware Specs
 - Functional Block
 - Housing
 - Connectors

 Identifies stages where Sherlock should be implemented

2. Initial Part Selection (Critical components)
 - When designing functional block diagram, identify critical parts
 - Determine which Sherlock analysis to perform
 - Benchmark Sherlock analysis to existing data (test, field, etc.)
 - Re-run Sherlock analysis based on environmental requirements

3. Initial Part Placement (Pre-layout!)
 - Perform part-level Sherlock analysis with temperatures from Icepak thermal analysis
 - Place parts based on risk of failure due to vibration, mechanical shock, thermal cycling, and bending

4. Final BOM
 - Run Sherlock analysis on piece parts (discretes, passives)
 - Identify problem parts before test
 - More valuable than a simple derating table

5. Final Layout
 - Perform Sherlock analysis with all design features
 - Perform optimization studies
 - Risk of failure? Identify mitigations before test

/ Minor Alterations to Your Current Design Process

1. Enhances your current design process
2. Seamlessly integrates with already occurring simulation
3. Prevents costly “test-fail-fix-repeat” cycle

Sherlock Automated Design Analysis™ Software is the only Reliability Physics-based electronics design tool that provides fast and accurate reliability predictions in early design stages

/ Manufacturability

- Evaluate all post-assembly manufacturing processes
- Establish load limits to prevent solder fracture, pad cratering, and component cracking
Decide which ‘Critical Components’ should be subjected to RPA?

Within an analog/digital circuit, the critical components is almost always an integrated circuit.

Option 1:
- All ‘Critical Components’
 - Relatively few critical components (5 to 20) in most systems
 - Financially painful if components need to be replaced

Option 2:
- Critical Components most likely to fail
 - Integrated circuits have three to four different reliability risks
 - Aging/Wearout of Silicon Transistors (EM, TDDB, HCI, NBTI)
 - Cracking of Low-K Dielectric
 - Radiation-Induced Failures of Silicon Transistors (SEU, TIO)
 - Solder Fatigue of the Semiconductor Packaging (Thermal Cycling, Vibration)
 - Evaluate critical components based on their susceptibility to these risks

Decide Which RPA to Run:

- Aging/Wearout of Silicon Transistors (EM, TDDB, HCI, NBTI)
- Cracking of Low-K Dielectric
- Radiation-Induced Failures of Silicon Transistors (SEU, TIO)
- Solder Fatigue of the Semiconductor Packaging (Thermal Cycling, Vibration)

Acquire Selected Part Test Data and Benchmark to Test Data

Option 1:
- If simulation does not match, test data, discuss with supplier
- After benchmarking to test data, model components to environmental conditions
- Accept/Reject/Bin the part