SCHOOL
Peters Township High School (McMurray, Pennsylvania)

INSTRUCTOR
Christopher Allen

CONTACT
allenc@pt-sd.org

PROJECT OBJECTIVE
Design an office chair based on predefined parameters

PROJECT OVERVIEW
This project follows the iterative design method (prototyping, testing, analyzing, and refining the design) to achieve minimum requirements with a primary goal of a project-based approach to structural design. It is completed in a digital format using ANSYS AIM to test designs, but can be adapted to include a traditional manufacturing component. Minimum project requirements are taken from the Americans With Disabilities Act (ADA) and modern manufacturing standards.

PROJECT STRATEGY
This project relies upon the scaffolding method in education culminating with a project-based challenge. Prior knowledge includes parametric modeling techniques, structural engineering concepts, product development concepts, product design techniques, manufacturing standards, and material science. As the final project for the course, students are presented with this project in three overall phases: research, design and testing, and final presentation.

Research Phase: As an introduction to this project, students begin with a experiential research assignment that requires they develop and utilize an evaluation system for current chairs on the market. Then they meet and interview other people who work in office environments to understand what they expect and would like in a new type of office chair.

Design and Testing Phase: Students begin preliminary designs in the form of rough sketches and moving on to technical drawings. This leads them into the parametric modeling phase of the project and then into structural analysis of their designs using ANSYS AIM. Finally, students evaluate the data from the structural analysis and use it to iterate on their design. With each new iteration, at least five required, of their design they test the structural performance under the given loads to reach a final design.

Final Presentation Phase: This phase requires a presentation which outlines their process in each of the three overall phases, as well as a visual demonstration of their iterative design process.
DIRECTIONS
Design a new type of office desk chair based on the Design Requirements and Dimensional Requirements listed below. The structural integrity of the chair will be tested using ANSYS AIM simulation software. The parameters of the simulation and how you will be graded is listed below.

DESIGN REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th>Seat</th>
<th>Backrest</th>
<th>Armrests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legs</td>
<td>3-5 individual</td>
<td></td>
<td>Legs: Only part touching ground</td>
</tr>
</tbody>
</table>

Aesthetic Design: Aesthetics is a study of the mind and how our brains interpret something as being beautiful or ugly. It is crucial for design because our first interaction with almost anything is based on how it looks.

Ergonomic Design: Ergonomics is the science of refining the design of products to optimize them for human use. Human characteristics, such as height, weight, and proportions are considered, as well as information about human hearing, sight, temperature preferences, and so on. Ergonomics is sometimes known as human factors engineering.

Use the above diagram as a reference for the Dimensional Requirements on the next page.
DIMENSIONAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Material Thickness</td>
<td>3"</td>
</tr>
<tr>
<td>Range of Overall Width of Seat (Not Overall Chair Dimensions)</td>
<td>13.9” – 18.0”</td>
</tr>
<tr>
<td>Range of Backrest from Seat Height (A)</td>
<td>31.3” - 38.3”</td>
</tr>
<tr>
<td>Range of Waist Depth (C)</td>
<td>7.3” – 11.4”</td>
</tr>
<tr>
<td>Range of Thigh Clearance (D)</td>
<td>21.0” – 26.8”</td>
</tr>
<tr>
<td>Range of Back-to-Knee (E)</td>
<td>21.3 – 26.3”</td>
</tr>
<tr>
<td>Range of Seat Depth (G)</td>
<td>16.9” – 21.1”</td>
</tr>
<tr>
<td>Knee Height (F)</td>
<td>19.8” – 28.0”</td>
</tr>
<tr>
<td>Range of Seat Height from Ground (H)</td>
<td>19.8” - 25.0”</td>
</tr>
<tr>
<td>Distance Between Armrests</td>
<td>16.5” – 19.0”</td>
</tr>
<tr>
<td>Max Height</td>
<td>80”</td>
</tr>
<tr>
<td>Max Width</td>
<td>32”</td>
</tr>
</tbody>
</table>

GRADING RUBRIC

Structural Efficiency (10 pts.)

<table>
<thead>
<tr>
<th>Mass of Chair</th>
</tr>
</thead>
</table>

Weight Requirements: Test the structural integrity of your chair design using the following weights, converting them to Pascals first.

1 pound = 6894.76 Pascals

<table>
<thead>
<tr>
<th>Pounds</th>
<th>275</th>
<th>300</th>
<th>450 (Bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtons</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structural Efficiency Score: Use the structural efficiency equation to determine your structural efficiency score. In the box below calculate your structural efficiency score based on your results and show your work. The Mass Held amount should be the weight held by your chair with no yellow areas during the Equivalent Stress simulation.

\[
\text{Mass Held} / \text{Mass of Chair} = \text{Structural Efficiency Score}
\]
Simulation Results (60 pts.)

Equivalent Stress (40 pts.): If the maximum value of equivalent stress induced in the material is more than strength of the material the design will fail. Points are awarded based on the performance of your design in the simulation.

<table>
<thead>
<tr>
<th>Weight</th>
<th>275</th>
<th>300</th>
<th>450 (Bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>Below Yellow</td>
<td>Yellow</td>
<td>Below Yellow</td>
</tr>
<tr>
<td>Value</td>
<td>30</td>
<td>20-29</td>
<td>40</td>
</tr>
</tbody>
</table>

Displacement Magnitude (20 pts.): Distance, as measured directly between the start point and the end point with no directional consideration.

<table>
<thead>
<tr>
<th>Below Yellow</th>
<th>Yellow (based on the number of contact points)</th>
<th>Above Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6-19</td>
<td>20</td>
</tr>
</tbody>
</table>

Design Evaluation

Design Requirements Adherence: Minus 10 pts. from final grade for every missing part

- Seat
- Backrest
- Armrest
- Legs: 3-5 individual
- Legs: Only part touching ground

Dimensional Requirements: Minus 5 pts. From final grade for every infraction

Aesthetic Design: Minus up to 5 pts. from final grade based on quality of aesthetic

Ergonomics: Minus up to 5 pts. from final grade based on quality ergonomic design
1. ANSYS AIM and File Setup
 a. When AIM opens you will see the following screen
 b. In the Study Panel select Structural for the Simulation Process Template
c. On the next menu, **Structural Template**, everything for the project file should be set and look like the following image.

![Structural Template Image]

d. Click **Create Simulation Process** and a panel will open to **Import Existing Geometry**, which is where you will select your **STEP File (.STP)**

2. Prepare and Edit Geometry
 a. Once your geometry has imported you will be looking at a new window with 3 important areas we will be using to set up our simulation.
i. Area 1 - Geometry View

ii. Area 2 - Workflow

iii. Area 3 - Simulation Process
b. Next we need to use the built-in CAD software to combine all of our individual parts. In the Simulation Process 1 panel click on the word **Geometry**.

![Simulation Process 1 panel](image)

- **Tasks**
 - **Geometry**: Geometry Modeling
 - **Mesh**: Meshing
 - **Physics**: Physics Solution
 - **Results**: Results Evaluation

- **Used by these tasks**

c. In the next panel you can either Replace Geometry or Edit Geometry

![Geometry panel](image)

- **Output**
 - **Edit Geometry**
 - **Replace Geometry**

3. Preparing the Mesh

a. In the **Workflow** area select **Mesh**.

![Workflow area](image)

b. In the **Simulation Process panel** do not make any changes and click **Generate Mesh**.

![Mesh panel](image)

- **Settings**
 - Use predefined settings
 - Mesh parameters
 - Global settings
 - Global settings
 - Auxiliary definitions
 - Output

- **Objects**
 - Mesh Controls
 - Size Controls

- **Related Objects**

c. The chair will now look like it has a net all over it which is the Mesh. The mesh represents the discretization of the physical domain into a mathematical model. The mesh enables AIM to assemble a system of equations, which are used to compute the physical response of the domain.

4. Assign Physics to the simulation
 a. In the Workflow menu select Physics

 ![Workflow menu]

 b. In the Physics Process panel find the Structural Conditions item. Click on the Add button and select Support.

 ![Structural Conditions]

 c. The Support 1 panel will open in the top left of the screen and under the Location box we will need to add the area of our model where the support of the ground will be located. In our case it will be at the bottom of each leg.
d. Next, navigate to the bottom of your chair by clicking on the chair and dragging your mouse until you can see the bottom.

![Chair bottom](image)

e. To actually select the bottom of the legs you need to use the Selection Buttons located in menu on the top-right of the screen. Make sure that the Face Selection button is selected which is indicated by the it being shown as orange.

![Selection Buttons](image)

f. Click the Bottom Face of each leg holding CTRL to select this face, which will turn orange.

![Bottom Face Selection](image)

g. Finally, with the face selected go Support 1 Panel and in the Location box click the Plus Button to add the face to the Support 1 Condition.

![Support 1 Panel](image)

5. Define the Pressure Structural Condition
 a. Return to the Physics Process Panel by selecting it in the Workflow Panel.
b. Add another **Structural Condition** using the **Add** button located next to the **Structural Conditions** line and select **Pressure**.

c. The **Pressure 1 Conditions Panel** will appear in the top-left of the screen and just like with the **Support 1** condition we will need to add a location where the pressure will be applied to our structure.

d. Using the same method of navigating around the chair, select the **top face of seat**.

e. Add these to the **Pressure Condition** by clicking the **Plus Button** in the **location** line of the **Pressure 1 Panel**.
f. Next we need to define the amount of pressure to be applied to the locations that you selected. Enter the amount of each weight of the test requirements in Pascals.

![Pressure 1](image)

> Related Objects and Tasks

![Physics](image)

> Auxiliary Definitions

> Output

Solve Physics

> Related Objects

6. Run the Simulation and Evaluate Results
 a. Click Evaluate in Workflow

![Evaluate Process Panel](image)

b. In the Evaluate Process Panel click on the Evaluate Results button to run the simulation.

![Results](image)

> Related Objects
c. The **Results Process Panel** will have then show an “**Up to Date**” symbol in green.

![Results Process Panel Image]

d. Now we can see the results by click on the word **Results** in this panel. Doing this will bring up another menu with two items, **Equivalent Stress** and **Displacement Magnitude**. **Clicking the arrows located in the top-left** will allow you to navigate between the two results.

![Results Menu Image]

e. Selecting one of these will bring up the results with the option to play an animation of the simulation. To play the animation click on the play button located above your building.

![Animation Image]
7. Document Results
 a. Navigate the camera to a view that shows your entire design.
 b. Right-Click on your design and then click “Save Image As…”
 c. In the “Save Image As” box that opens click on the button to the right of the “File” box that has 3 dots and select your H: Drive to save each picture