Thermal and Mechanical Coupling with HFSS
“Closing the loop”

Anders Edquist, ANSYS Nordic
Outline

- **Introduction to Multi-Physics Simulations**
- **Enabling Technologies**
 - EM, Thermal, Structural Mechanics and fluid flow & conjugate heat transfer
 - ANSYS Workbench
- **Thermal and Mechanical Coupling with HFSS:**
 - “Closing the Loop”, Waveguide Diplexer Example
 - Waveguide Termination Example
Introduction

• High performance RF/microwave systems and components design often requires consideration of operation in a real-world multi-physics environment.

• Understanding the interaction between multiple coupled physics is essential for an accurate system analysis.

• ANSYS offers a comprehensive solution capable of performing bi-directional coupled analysis between EM, thermal, structural mechanics and fluid flow.
• **Overview of multi physics capabilities**
 – ANSYS Workbench gives users the ability to easily couple multiple physics into a single workflow.
 – Users not experienced in all engineering disciplines can conduct a study across multiple physics by monitoring input and output parameters.
 – Powerful software packages
 • Electromagnetic Simulation using **HFSS, Q3D, Maxwell, Simpler**
 • Thermal/Stress using **ANSYS Mechanical**
 • Computation Fluid Dynamics using **Fluent, CFX, Icepack**
Overview ANSYS EM Capabilities (HFSS)

- FEM, IE, PO, Hybrid, and Transient Solvers
- Adaptive Meshing Technology
- Higher and mixed order basis functions
- Direct and Iterative Matrix Solvers
- Analytical Derivatives
- Domain Decomposition Methods
Overview Thermal/Stress Capabilities (ANSYS Mechanical)

- Steady State/Transient
- Explicit Solvers (Bird Strike)
- Solid, Shell, Beam, and Point Mass Elements
- Convection/Conduction/Radiation/Advection
- Layered Composite Shells and Solids
- Automatic Contact Setup (Thermal and Structural)
- HPC for large model support
Overview of CFD Capabilities (Fluent)

- Incompressible/Compressible Flow
- Extensive Turbulence Models
- Multi-Species & Reacting Flow
- Conjugate Heat Transfer
- Fluid Structure Interaction – 1 way & 2 way
- Dynamic, moving & sliding meshes
ANSYS Workbench

• ANSYS Workbench for multi-physics simulation and design exploration

• Ansoft products integrated into ANSYS Workbench platform
 – HFSS,
 – Maxwell
 – Designer
 – Q3D Extractor

• Analysis Systems
 – Thermal
 – Stress
 – CFD
 – EM
 – Design Exploration
“Closing the Loop”

- **Multi-Physics Simulations**
 - EM Solution using HFSS
 - Losses passed to ANSYS Mechanical or Fluent/CFX/Icepack for thermal analysis
 - Thermal loading applied to structural solution along with any external loads to calculate deformation

- **Complete Two-Way Coupling**
 - Electrical properties in HFSS can include a temperature dependency determined by the thermal solution
 - Deformed mesh results from structural analysis returned to HFSS for additional analysis
 - Iteration of simulation process to reach steady state

- **Multiple physics analysis completed using ANSYS Workbench**
Setting up the Project Environment

1. Add the HFSS analysis block
Waveguide Diplexer Example

35 GHz

100W

37 GHz

Enable Stress and/or Thermal Feedback

Solution Type...
Edit Options...
Deformation of Objects

Check Mark Box

Enable Stress Feedback

Object Name	Material	Deformation Dependent
wg_inter | vacuum | False
wg_outer | aluminum | True
Waveguide Diplexer Example

Define/test different thermal boundary conditions

Example:
10 W/m², 2.7e-3 m² → approx 0.03 W!
0.1 W, 10 W/m² → 0.01 m² → 0.1 x 0.1 m

Exporting Surface Loss Density With Scaling...

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Total Loss</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>silversurf</td>
<td>3.34541W</td>
<td>1.03396</td>
</tr>
</tbody>
</table>
Waveguide Diplexer Example
Waveguide Diplexer Example

![Waveguide Diplexer Diagram]

x 100 000

s-parameters

Current Info
- s11 swept
- s21 swept
- s12 swept
- s22 swept
- s11 ref. imported
- s21 ref. imported
- s12 ref. imported

HFSS Design1

[Graph showing s-parameters]
Waveguide Termination

- **Waveguide Termination Geometry**
 - Perfect termination would result in nearly all input power absorbed by lossy material
 - Power absorbed in lossy material is realized in the form of heat
 - Power handling of termination depends on how well heat is transferred away from metal housing

- **Analysis**
 - HFSS is used to calculate the RF losses in waveguide termination
 - Thermal analysis using Icepak calculates temperatures using fluid dynamics
Introduction to Icepak

- ANSYS Icepak delivers powerful technology for electronics thermal management using computational fluid dynamics
- Based on ANSYS FLUENT solver
- Fast and accurate thermal results for electronics cooling applications
- Libraries of standard electronic components
 - Material Data, heat sinks, thermal interface materials, filters, packages, and fan and blower data.
Waveguide Termination – Thermal Management Configurations

1. **Aluminum housing**
 - Heat dissipation through natural convection on housing

2. **Heat Sink**
 - Increase surface area for natural convection and conduction away from thermal source

3. **Fan and Cabinet**
 - Forced air convection to increase heat flow away from thermal source
Power Handling of Waveguide Termination

Temperature vs. Input Power

• From this analysis we can identify cost savings by selecting an appropriate cooling method for the application power requirements.
Summary

• Using ANSYS Workbench, multiple physics simulations can be coupled to gain a better understanding of entire system performance

• With ANSYS Release 14.5, both stress and thermal feedback into HFSS from ANSYS Mechanical now give engineers the tools for more complete analysis and understanding of designs

• Coupling between HFSS and Icepak shows how the interaction between EM and fluid dynamics can be used for thermal management analysis
Extra
• Benefits of Integration
 – Utilizes intuitive multi-physics layout
 – Automated data exchange
 – Coupled physics solutions
 – Efficient system design exploration
 – Streamlined geometry handling
 – CAD integration in ANSYS Workbench provides bi-directional link to 3rd party CAD
 – Multiple physics can share the common geometry
 – Integration with EKM, Team Center and other PLM tools
 – Extensive Material Library
The Workbench Environment

- CAD Geometry
 - Coupled Physics Solutions
 - Automated geometry transfer and data exchange of solution shown by connections

Available Physics

Parameter Set
- Controls inputs and views outputs of each simulation, i.e. Input = Antenna Scan Angle, Output = Max Radome Deformation

Design Exploration
• Bi-direction Coupled Full-Wave EM to Thermal Stress Simulation of diplexer component
• High power RF input can result in cavity deformations large enough to shift response
 • External thermal and structural loads can also be applied to see impact on electrical performance
Application Examples

• Application Examples

 – Dielectric Resonator Filter
 • Filters need to meet stringent design specifications which often include operating environment and power handling
 • Analysis of electrical performance due to thermal and structural loads is achieved with bi-directional coupling between HFSS and ANSYS Mechanical

 – Connector
 • Electrical performance may easily be met while not able to meet thermal limits
 • It is important to understand design tradeoffs in more than one physics domain

 – Waveguide Termination
 • High power absorption by waveguide terminations can produce many thermal design considerations
 • Icepak allows accurate thermal modeling using computational fluid dynamics coupled to HFSS
 – Library of heat sinks and fans allow for simplified thermal analysis setup
Dielectric Resonator Filter Analysis

• Example filter
 – Dielectric resonator TE-mode filter.
 – Typically used in the high power applications where low loss and good power handling are needed
 – One major design challenge is how to account for effects on performance due to high temperature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Loss</td>
<td>> 18 dB</td>
<td>2561 – 2579 MHz</td>
</tr>
<tr>
<td>Insertion loss</td>
<td>< 0.35 dB</td>
<td>2561 – 2579 MHz</td>
</tr>
<tr>
<td>Attenuation</td>
<td>> 15 dB</td>
<td>< 2553 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 2588 MHz</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-5 to +45°C</td>
<td></td>
</tr>
<tr>
<td>Average Power</td>
<td>200 W</td>
<td></td>
</tr>
</tbody>
</table>
• Temperature Compensation
 - The temperature drift of the resonators can be compensated by carefully selecting dielectric material with suitable temperature coefficient (τ_f).
 - Two-way EM-Thermal/Stress analysis makes it possible to evaluate the effect of different (τ_f) on filter performance.
 • Temperature dependent material properties
 • Geometry deformation
Simulation Design Flow

- **EM Analysis**
 - Temperature dependent material properties
 - Full HFSS analysis with Ansoft Designer for virtual filter tuning

- **Thermal Analysis**
 - Boundary conditions for convection and other thermal properties applied
 - Temperature feedback to HFSS

- **Structural Analysis**
 - Structural boundary conditions and thermal stresses
 - Mesh deformation feedback to HFSS
Temperature Drift and Temperature Compensation

\[f \approx \frac{1}{\text{size} \sqrt{\varepsilon_r}} \]

\[T \uparrow \Leftrightarrow \text{size}_{\text{general}} \uparrow \Leftrightarrow f \downarrow \quad \text{temperature drift} \]

\[\text{size}_{\text{puck}} \downarrow \Leftrightarrow f \uparrow \]

\[T \uparrow \Leftrightarrow \text{size}_{\text{cavity}} \uparrow \Leftrightarrow \text{size}_{\text{puck}} \downarrow \Leftrightarrow f \uparrow \quad \text{“mechanical” compensation} \]

\[T \uparrow \Leftrightarrow \varepsilon_r \downarrow \Leftrightarrow f \uparrow \quad \text{“electrical” compensation} \]
Understanding Temperature Compensation

- Two-Way Thermal Analysis
 - Only including temperature feedback into HFSS
 - Material properties are temperature dependent
 - Electrical compensation
 - τ_f

- Two-Way Structural Analysis
 - Only including deformed mesh feedback into HFSS
 - Material properties are temperature independent
 - Mechanical compensation

Temperature compensation uses electro-thermal properties of material to offset effect of deformations caused by thermal stresses

Effects can be studied individually or combined
Dielectric Resonator Filter Analysis – Choosing Materials

Dielectric Resonator Data Sheet

<table>
<thead>
<tr>
<th>Material Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant: (\varepsilon_r)</td>
</tr>
<tr>
<td>Temperature coefficient of resonant frequency ((\tau_f) ppm/°C)</td>
</tr>
<tr>
<td>Q (1/tanδ) min</td>
</tr>
<tr>
<td>Thermal expansion (ppm/°C) (20–200°C)</td>
</tr>
<tr>
<td>Thermal conductivity (cal/cm/sec°C) @ 25°C</td>
</tr>
</tbody>
</table>

• Dielectric resonator available with temperature coefficient, \(\tau_f = -6 \) to \(+6\) ppm/°C
 • Temperature compensation achieved with appropriate material characteristics

• Using ANSYS Workbench and coupled physics, we will:
 • Determine ideal \(\tau_f \) for optimal filter performance
 • Test design trade-offs for materials
 • Validate specifications are met while also including operating environment conditions
Dielectric Resonator Filter Analysis

$\tau_f = +6 \text{ ppm/}^{\circ}\text{C}$

Ambient Temperature = 45 $^{\circ}\text{C}$, Input Power = 200 W
Dielectric Resonator Filter Analysis

\[\tau_f = 0 \text{ ppm/}^\circ\text{C} \]

Ambient Temperature = 45 \(^\circ\text{C}\), Input Power = 200 W
Dielectric Resonator Filter Analysis

\[\tau_f = -6 \text{ ppm/°C} \]

Ambient Temperature = 45 °C, Input Power = 200 W

Minimized frequency shift with available dielectric resonator materials
Dielectric Resonator Filter Analysis

Material outside of data sheet specification can achieve best temperature compensation at possibly higher cost and/or time tradeoff

\(\tau_f = -9 \text{ ppm/}^\circ\text{C} \)

Ambient Temperature = 45 °C, Input Power = 200 W
• TRU Corporation Right Angle Adaptor
 – Type N to SC connector

• Maximum Power Handling
 – 1kW @ 2.5 GHz

• Design Tradeoffs
 – Important to understand how material choices can effect both electrical and thermal performance
 – Material that may meet electrical specifications may not meet thermal specifications

*Model courtesy of TRU Corporation
Design Consideration: Dielectric Supports

- Material choice will affect electrical performance and also mechanical performance
 - Electrical performance requires controlled 50 ohm impedance transition
 - Mechanical performance requires operating within thermal limits at rated input power

Dielectric Supports/Insulators
- Compare two materials
 - Teflon
 - Cheapest solution
 - Low thermal conductivity
 - Fluoroloy H
 - Higher thermal conductivity
Thermal Performance: Teflon

• Input Power - 1kW @ 2.5 GHz

• Operating Environment
 – 22 °C
 – Natural Convection

• Dielectric Supports
 – Teflon
 – Thermal Conductivity: 0.25 W/(m·K)
 – Melting Point: 327°C

• Conductors
 – Tri metal plating defined by layered impedance boundary condition

• Peak temperature: 404.41°C
 – Based on the thermal analysis results, dielectrics would melt and the part will fail
 – Cheapest material choice would not meet thermal requirements even though it would meet all electrical requirements
Input Power - 1kW @ 2.5 GHz

Operating Environment
- 22 °C
- Natural Convection

Dielectric Supports
- Fluoroloy H
- Thermal Conductivity: 1.21 W/(m·K)
- Melting Point: 327°C

Conductors
- Tri metal plating defined by layered impedance boundary condition

Peak temperature: 199.27°C
- Well within thermal limits
- Electrical and thermal performance requirements are met
Connector Thermal Performance

![Graph showing Input Power Vs. Max Temperature for Teflon Insulators, Fluoroloy H Insulators, and Melting Point.](image)

- Temperature Reduction with Fluoroloy H insulators